Электродвигатель для лодки: Какой выбрать электродвигатель для лодки: классификация и устройство лодочных электромоторов, правила ухода – Лодочный электромотор ТОП-5 обзор, характеристики, где купить цена

  • Home
  • Разное
  • Электродвигатель для лодки: Какой выбрать электродвигатель для лодки: классификация и устройство лодочных электромоторов, правила ухода – Лодочный электромотор ТОП-5 обзор, характеристики, где купить цена

Содержание

Самый мощный электромотор для лодки

Какой лодочный электромотор считать самым мощным? Тот, который потребляет большую мощность от аккумуляторной батареи? Или может быть тот, который легко толкает вперед даже тяжелую лодку, потребляет маленький ток и долго работает от аккумуляторов?

Содержание статьи

Бензиновый и электрический моторы для лодки

Лодочные электромоторы могут развивать ту же тягу, что и двигатели внутреннего сгорания обладая при этом значительно меньшей мощностью на валу. Это происходит благодаря различной форме кривых крутящего момента электрического и бензинового двигателей. У двигателя внутреннего сгорания график крутящего момента имеет выраженный пик, из-за которого максимальный момент доступен только в ограниченном диапазоне оборотов вала. Зависимость крутящего момента от оборотов у электродвигателя гораздо более плоская и его достаточно при любой частоте вращения

Графики крутящего момента для различных типов двигателей
Максимальный крутящий момент и мощность – это важные характеристики двигателя. Момент определяет способность быстро ускоряться и тянуть груз, а мощность (приведенная к весу) максимальную скорость. Крутящий момент зависит от числа оборотов вала. У разных типов двигателей эта зависимость имеет свой вид. У электродвигателя скорость преобразования энергии от аккумуляторной батареи не связана с частотой вращения вала. В двигателях внутреннего сгорания с ростом числа оборотов давление и температура возрастают и достигают оптимального сочетания при определенной частоте вращения на которую и приходится пик крутящего момента.

Пологая характеристика момента позволяет устанавливать на лодочные электромоторы более эффективные гребные винты. КПД гребного винта у некоторых электромоторов для небольших лодок в три раза выше, чем у подвесных бензиновых двигателей того же класса.

Какая бывает мощность

Производители лодочных моторов используют разные виды мощности. Встречаются мощность на валу, потребляемая мощность и даже тяга. Поэтому прежде чем сравнивать лодочные электромоторы различных марок нужно привести имеющиеся данные к «общему знаменателю»

Единый критерий для сравнения важен. Мощности, измеренные в разных местах, существенно отличаются друг от друга. Мотор, развивающий на валу 4 л. с., на винте выдает всего 1 л.с.

Потребляемая мощность, на валу и на винте

Виды мощности
Гребной винт преобразует энергию двигателя в силу, которая преодолевая сопротивления воды и воздуха двигает лодку вперед с выбранной скоростью. Часть энергии при этом теряется и мощность, идущая на движение судна, всегда меньше той, что потребляет двигатель. Rt — сопротивление воды; Pe — эффективная (буксировочная) мощность; Pt — мощность на винте; Pв — мощность на валу; Pb — мощность двигателя. T — тяга; V — скорость

Потребляемая мощность – часто используется как характеристика электродвигателя для лодки (мощность = ток х напряжение). Измеряется в Ваттах или лошадиных силах. Производители бензиновых или дизельных лодочных моторов этот вид мощности не используют. Однако для двигателя внутреннего сгорания потребляемую мощность также можно посчитать, если умножить теплотворную способность топлива на его расход.

Мощность на валу – используют производители подвесных бензиновых лодочных моторов. Этот вид мощности считается также как у автомобиля (мощность = крутящий момент х угловая скорость). Единица измерения – лошадиные силы или ватты. Мощность на валу учитывает потери в редукторе, но не учитывает потери на винте, которые составляют от 20 до 70%.

Мощность на винте

– более ста лет служит общепринятой характеристикой двигателя в судостроении. Учитывает все потери мощности и определяет энергию, передаваемую лодке двигателем.

Тяга лодочного электромотора

Во время вращения винта на поверхностях лопастей возникает подъемная сила. Составляющая этой силы направленная по оси движения лодки называется упором или тягой. Она характеризует ту часть подъемной силы, которая толкает судно вперед.

Полезная мощность, производимая лодочным винтом, равна его тяге, умноженной на текущую скорость лодки. В характеристиках электромоторов производители всегда указывают максимальное значение тяги. Сделать по ней вывод о мощности электромотора на винте без установки датчиков и проведения измерений нельзя.Виды мощности

Тягу определяют в ходе испытаний, во время которых лодку соединяют с пирсом динамометром и заставляют двигаться вперед. Проверку проводят на спокойной воде, в безветренную погоду, на достаточной глубине и расстоянии от берега. Для носовых лодочных электромоторов значение тяги чаще всего указывают в фунтах силы (lbs).

Потери мощности в лодочном электромоторе

Ротор и щетки недорогого лодочного электромотора
Ротор, щеточный узел и щетки лодочного электромотора. Щетки и кольца служат источником потерь и снижают надежность электромотора. В мощных лодочных электромоторах двигатели постоянного тока не используют

Общая эффективность силовой установке на лодке с двигателем внутреннего сгорания около 15%. Для судна с электромотором такой показатель – непозволительная роскошь. Считается, что лодочный электродвигатель работает эффективно, если с учетом потерь на винте его КПД около 50 %. При этом КПД электромотора должен быть не менее 80%, а винта не мене 63%.

Потери мощности пропорциональны сопротивлению проводника и квадрату протекающего через него тока. Если ток возрастает вдвое, потери возрастают в четыре раза. Если ток растет в десять раз, потери увеличиваются в сто. Уменьшить ток и потери можно, если повысить напряжение в цепи.

Общепринятое на сегодня напряжение мощных лодочных электромоторов 48 вольт, но для небольших лодок подходят и 24-вольтовые модели. При силе тока 50 А максимальная мощность электромотора в 12-вольтовой системе составит 600 Ватт, а в 24 Вольтовой – 1200 Ватт

Второй способ снизить потери в цепи постоянного тока – это увеличить сечение кабеля. Правильно подобранный кабель повышает эффективность и безопасность электрической системы, устраняет локальный перегрев и снижает потери энергии.

Винт

Высокий КПД имеет винт с большим диаметром, шагом и низкой скоростью вращения. Однако с таким винтом может работать только мотор, развивающий высокий крутящий момент.

Разрез лодочного электромотора с редукторомРедуктор служит источником дополнительного шума и потерь. В профессиональных электромоторах их стараются не использовать

Большинство гребных винтов для подвесных моторов небольших лодок созданы на основе испытаний проведенных еще в 1940–1960-х годах прошлого века. Общие принципы проектирования, появившиеся тогда, систематизированы в виде таблиц и графиков и используются изготовителями до сих пор.

При разработке современных винтов используют другой подход. Сначала на компьютере создают трехмерную модель, а затем шаг и кривизну профиля винта оптимизируют для каждого сечения с учетом изменяющихся вдоль диаметра условий обтекания потоком воды.  Винты этого типа называют винтами с переменным шагом. Их потери меньше, а КПД выше.

Виды электромоторов

Подвесные

Подвесной лодочный электромотор Подвесной лодочный электромотор для профессионального использования Aquamot

Подвесные электромоторы устанавливают на транце или реже на носу лодки. В стандартном исполнении электромотор соединяется с системой рулевого управления, в моделях с румпелем лодкой управляют поворачивая двигатель. Мощность румпельных электромоторов варьируется от 1 до 4 кВт, а у моделей с рулевым управлением достигает 15 кВт.

Как правило мощные подвесные электромоторы рассчитаны на напряжение 24-48 Вольт. 24 вольтовый электрический двигатель мощностью 2,2 кВт развивает на винте тягу 124 lbs и сопоставим по этому показателю с подвесным бензиновым мотором мощностью 6,5 л.с. Двигатель мощностью 15 кВт эквивалентен бензиновому мотору 35 л.с

В подвесных лодочных электромоторах используют асинхронные двигатели переменного тока или синхронные двигатели на постоянных магнитах. Оба типа двигателей бесщеточные, не имеют изнашивающихся частей и не требуют обслуживания.

Pod электромоторы

POD электромоторы для профессионального использованияPOD электромоторы для профессионального использования Aquamot. Электромотор справа крепится на лодке в фиксированном положении. Слева поворотный вариант. Цепи преобразования постоянного напряжения в переменное и управления электродвигателем размещают внутри лодки в отдельном блоке. Скорость и направление вращения винта регулируют ручкой, как и на катере с бензиновым двигателем

POD электромоторы подходят как для однокорпусных лодок и катеров, так и для катамаранов со сдвоенными двигателями. Электромотор состоит из блока управления и гондолы внутри которой установлен асинхронный или BLDC электродвигатель. Гондола аэродинамической формы крепится к днищу судна фланцами из нержавеющей стали между килем и рулем. Чтобы избежать вибрации на руле, вызванной турбулентностью за винтом, и снизить сопротивление потоку воды гондолу стараются располагать ближе к килю.

Выпускается две модификации POD электромоторов — фиксированная и поворотная. Поворотная модель соединяется с системой рулевого управления или румпелем и обеспечивает более высокую маневренность судна

Электрические лодочные моторы типа Pod имеют мощность от 1 до 25 кВт.

Бортовые лодочные электромоторы

Бортовой лодочный электромоторБортовой лодочный электромотор Aquamot. Электромоторы этого типа выпускаются мощностью от 2,5 до 30 кВТ

В бортовой силовой установке электродвигатель устанавливают внутри судна и соединяют с винтом валопроводом. Бортовым моторам требуется принудительное охлаждение. В зависимости мощности электродвигателя оно может быть воздушным или водяным.

Установка бортового электромотора на лодку сложнее чем подвесного или POD. Дополнительно потребуется вал, муфта, сальник, втулка Гудрича (дейдвудный подшипник), дейдвудная труба. Валы электромотора и винта необходимо центрировать – они должны иметь общую ось. При неправильной установке возможны протечки через сальник

Электромоторы для профессионального использования

Если лодка или катер используется для перевозки туристов, организации экскурсий или водных прогулок, то электрическая установка может оказаться выгоднее двигателя внутреннего сгорания. Экономия достигается из-за более низкой стоимости энергии и практически нулевых затрат на техническое обслуживание.

Сравнение показывает, что при коммерческой эксплуатации судна переход с бензинового на электрический двигатель окупается за 1-2 года. Однако для этого профессиональный лодочный электромотор должен отвечать определенным требованиям:

  • Иметь высокий КПД – это позволит эксплуатировать его с аккумуляторной батареей меньшей емкости, снизит первоначальные затраты, время зарядки и стоимость потребляемой электроэнергии
  • Быть простым и надежным — электромотор должен выдерживать ежедневную интенсивную нагрузку и иметь минимум лишних функций. Дополнительные возможности, такие как встроенный компьютер c GPS, повышают цену и могут стать источником неисправностей в будущем.
  • Стоимость ремонта и технического обслуживания в течении периода эксплуатации должна быть минимальной

Надежность

Корпуса профессиональных лодочных электромоторов отливают из алюминия, а затем дополнительно наносят многослойное антикоррозионное покрытие. Вал делают из нержавеющей стали, а винт из бронзы. Для защиты от коррозии устанавливают жертвенный анод

Электроника в корпусе лодочного электромотораЗеленая плата в центре электромотора — электронный коммутатор, который заменяет щетки и кольца. Слева та же плата в увеличенном виде. В окружении воды электронные компоненты иногда работают не стабильно и отказ всего одного элемента на плате влечет за собой выход из строя всего электромотора. Заменять приходится плату целиком — это увеличивает стоимость ремонта, время простоя электромотора и срок его окупаемости при профессиональном использовании

В мощных электромоторах для лодок используют асинхронные двигатели переменного тока или BLDC PM электродвигатели, которые также называют вентильными.  Питание вентильных двигателей осуществляется от импульсных источников энергии. При этом импульсы напряжения подаются на обмотки статора в заданные моменты времени – при определенном положении ротора относительно статора. Положение ротора определяют датчики, которые, как и импульсный источник питания, в моторах небольшой мощности находятся на печатной плате, расположенной внутри подводной части электромотора.

Внутри корпуса трехфазного асинхронного двигателя дополнительных электронных компонентов нет. На долговечность двигателя влияют только подшипники и обмотки, однако качество этих элементов в настоящее время таково, что асинхронные двигатели служат до 50 000 часов без осмотра и ремонта.  Асинхронные двигатели просты, надежны и эффективны. КПД мощного электродвигателя 85-92%, что на 30% выше, чем у двигателя постоянного тока, и на 40-50% больше, чем у двигателя внутреннего сгорания.

Система безопасности электромотора для коммерческих лодок имеет как механические, например, заданный предел прочности киля, так и электронные средства защиты. Электромотор отключается при перегрузке по току, при пониженном и повышенном напряжении аккумуляторов

Экономичность

Высокий КПД достигается только при последовательном и тщательном улучшении всех элементов электромотора. Потерь мощности стараются избежать во всех узлах. Воздушный зазор в двигателе, конструкция ротора, изоляция обмоток оптимизируют на компьютере так, чтобы электродвигатель подходил для использования на лодках.

Корпуса двигателей и винты проектируют по тем же правилам, что и в коммерческом судостроении. Сначала рассчитывают обтекание подводных частей по трехмерной модели, а затем результаты проверяют на натурных гидродинамических испытаниях.

Редуктор, который устанавливают на некоторых моделях лодочных электромоторов не используют. Вместо этого вал электродвигателя напрямую соединяют с винтом, и конструируют двигатель таким образом, чтобы его обороты совпадали с оптимальными для винта

В результате во время движения электромотор не теряет мощность, не создает дополнительное сопротивление и способен долго работать на одной зарядке аккумулятора

Выбор лодочного электромотора.

Для чего нужен лодочный электромотор и как выбрать электромотор для надувной или пластиковой лодки?

Лодочные электромоторы уже давно вошли в разряд привычных и необходимых элементов маломерного судна. Электромотор для лодки помогает решить целый ряд задач связанных с рыбалкой, охотой и отдыхом на воде:

1. В качестве маршевого двигателя — средний пробег на заряженном аккумуляторе 15-25 км.!!! (зависит от ёмкости АКБ)

2. В качестве дополнительного (к бензиновому) для небольших переходов — не нужно постоянно заводить основной двигатель для перемещения на несколько десятков/сотен метров.

3. Бесшумно подойти уловистому месту или месту стрельбы.

4. В качестве основного двигателя при ловле на дорожку (троллинг).

5. Для перемещения по водоёмам, на которых запрещено использование бензиновых моторов.

6. В качестве основного двигателя в период нереста рыбы (с момента вскрытия рек до 10 июня) — действует запрет на бензиновые моторы.

7. Как дополнительный двигатель при движении по мелководью и при подходе к берегу.

Какие параметры являются определяющими при выборе троллингового электромотора?

1. Мощность электромотора (тяга) — указывается в фунтах (1 фунт=0,453 кг). 

  Для жителей России и стран СНГ более понятна мощность, измеряемая в лошадиных силах — в описании каждого мотора указанна мощность в л/с и в фунтах Lbs.

Существует два способа подбора электромотора:

  • По длине лодки
  • По массе лодки вместе с грузом и пассажирами

Оба способа имеют право на существование, но наиболее оптимальным и точным будет применение обоих способов одновременно.

Если  ориентироваться на тягу в Lbs, то рекомендации следующие:

 Ступенчатое переключение скоростиШИМ
Длина лодки / тяга мотора Lbs20-2430-3440-4450-55 6585110-130160
 до 2,8 метраДаДа  Да   
 до 3,8 метра ДаДаДаДа   
 до 4,5 метров  ДаДаДаДаДаДа
 до 5 метров   ДаДаДаДаДа
 более 5 метров     ДаДаДа

Данная таблица носит усредненно-рекомендательный характер, т.к. имеет место существенная разница между надувными лодками и пластиковыми. 

  Например: для пластиковой лодки Пелла-Фиорд 4,3 метра вполне подойдет электромотор с тягой 30 Lbs (Haswing Osapian 30) т.к. у неё очень хороший ход.

  А для надувной лодки длиной 4,3 метра нужен мотор с тягой не менее 40 Lbs (Haswing Osapian 40), а лучше более мощный (Haswing Osapian 55 или  Haswing PROTRUAR 1.0).
  Это обусловлено большой парусностью и худшей «гидро-динамикой» надувной лодки.

  Или для лодки 2,8 метра мы можем рекомендовать мотор с тягой 65 Lbs (Haswing PROTRUAR 1.0)  и не предлагаем Haswing Osapian 55, почему?

  А потому что первый мотор имеет бесступенчатое переключение скоростей ШИМ, при котором расход батареи, соразмерен нагрузке.
  А в случае Haswing Osapian 55 lb — ступенчатое переключение не позволяет существенно снизить энергозатраты, даже если лодка очень маленькая и легкая — расход батареи будет неоправданно большим.

Если же рассмотреть моторы с тягой 85, 110, 130 или 160 Lbs то они питаются от сети 24 вольт и требуют установки двух последовательно соединенных батарей (12+12 вольт), что для лодки длиной 2,8 м. или 3,8 м. не очень оправдано, хотя и возможно — выбор тут за Вами.

При подборе мотора обязательно следует учитывать общий вес лодки, груза и пассажиров.

Масса снаряженной лодки, кг.2803504005506006508509001050115013001800200027003000
Тяговое усилие электромотора  Lbs18202428303440455055658085110130-160

Так же, как и в предыдущей таблице, здесь указаны усредненные данные, без учета типа лодки, погодных условий и водоема. Так что всегда учитывайте вашу ситуацию и ваши условия….

Например: пластиковая лодка Пелла-Фиорд 4,3 м. + 1-2 человека,  без груза — подойдет мотор 30 Lbs, а при полной загрузке лучше обратить внимание на электро-мотор 40 Lbs. Но как и во многих других ситуациях, самым беспроигрышным вариантом будет  Haswing PROTRUAR 1.0.

Важно! 

Электрические троллинговые моторы не являются скоростными и выбор мотора с сильно завышенной тягой, не гарантирует значительного прироста в скорости.

2.  Длина дейдвуда (ноги) — варьируется от 660 мм. до 1350 мм. 

Для  пластиковых и надувных лодок с высотой транца 380-400 мм. оптимальными являются электромоторы с длиной дейдвуда  660 — 760 мм. (при использовании в качестве основного мотора).  

Если электромотор установлен на транец вместе с бензиновым подвесным мотором — следует остановить свой выбор на электромоторе с длиной дейдвуда 750-1050 мм. 

3. Опции

  • Телескопический румпель
  • Количество скоростей вперед/назад
  • Встроенная подстветка 
  • Румпель с изменяемым углом наклона
  • Датчик разряда аккумулятора 
  • Клемы или «крокодилы» для присоединения к АКБ
  • Металлическая или пластиковая струбцина
  • Дистанционное управление (для баковых электромоторов)
  • Наличие встроенного аккумулятора
  • Магнитная чека безопасности
  • Принудительное водяное охлаждение  (для мощных моторов)
  • ШИМ (бесступенчатое переключение скоростей) снижает расход батареи
  • Защита от случайного запуска

 ——————————————————————-

Посмотреть, выбрать и приобрести электромотор для лодки Вы сможете в нашем магазине, по адресу: Санкт-Петербург, наб. Черной речки 1  или сделав заказ через Интернет магазин.

С условиями доставки по России можно ознакомиться в разделе «Оплата и доставка»

Так же Вы сможете подобрать и приобрести тяговый аккумулятор, зарядное устройство, запасные винты и другие аксессуары для отдыха на воде.

Электромоторы для надувной лодки, сравнительный тест

Какой выбрать электромотор для надувной лодки? Какую можно будет развить скорость под электромотором? Какая у него автономность, сколько часов он будет работать вот на этом аккумуляторе? Все электромоторы одинаковые? Стоит ли менять мой бензиновый лодочный мотор на электрический? И еще несколько аналогичных вопросов возникает в голове у того, кто собирается, выбирает и думает купить электромотор для своей лодки, в большинстве своем надувной. Для получения ответов, мы взяли несколько моделей лодочных электродвижителей, парочку тяговых аккумуляторов и две надувные лодки разной длины и провели сравнительный, подробный тест.

Вводные данные

Выбор для теста пал на самые популярные бренды лодочных электромоторов, которые представлены наибольшим количеством моделей у нас в стране. Ими стали Flover, Minn Kota, Haibo и Outland. Некоторые модели были совершенно новыми, так сказать «из коробки», а другие использовались не один раз, настоящие рабочие лошадки у наших друзей и коллег. И это как раз хорошо, можно будет выяснить как изменяются характеристики мотора со временем.

Что касается лодок, то сильно выбирать их нам не пришлось. Удалось достать на тест две модели от одного производителя Мнев и К. Ими стали Кайман 330 и Кайман 380. Очень популярные лодки в наших широтах, так что тест будет полезен для большого числа рыбаков. и не нужно возмущаться приверженцам того же Баджера, Фрегата или Флагмана, да и других. Кайманы производятся уже давно и все всё о них знают. У них классическая конструкция с жестким фанерным пайолом, стационарным транцем, надувным килевым днищем и конусовидными концевиками баллонов. Такая форма и компоновка используется у большинства брендов, так что в итоге никто не останется обделенным.

На тест нам удалось достать два тяговых кислотных аккумулятора с емкостями 95 и 100 ампер часов. 100 амперный был новым, а вот 95-ка использовалась на тот момент около 3-х сезонов и в его послужном списке примено 200 циклов заряда/разряда, что по инструкции составляет 1/2 от его ресурса. И это еще один эксперимент, каким образом влияет состояние аккумулятора на итоговые характеристики мотора, который он питает. Будет интересно.

Место, время, как…

Тест наш проводился летом в июне, на реке Волга. Погода была малооблачная, ветер северо-западный, скорость 3-5 м/с. Скорость лодок фиксировалась с помощью обычного GPS навигатора Garmin модели Oregon 200. Для замеров напряжения и силы тока в цепи мы взяли прибор Ц4324, классический современный «Тестер».

Лодочные электромоторы на тесте

Модельный ряд каждого, уважающего себя, производителя лодочных электромоторов состоит, как минимум, из 4-5 моделей с разной мощность, тягой и другими характеристиками, чтобы покрыть, как и полагается, большую часть конкурентного рынка. Самые маленькие электромоторы имеют тягу около 13 кг, что равносильно мощности 0,38 л.с. Они предназначены для лодок со снаряженной массой до 700 кг. А самые мощные имеют тягу 25 кг. (0,85 л.с.) и уже готовы тащить суда, у которых снаряженная масса 1,5 тонны. Нам таких мощных не нужно, суда у нас маломерные и дай бог мы наберем 400 кг массы, так что мы выбрали на тест «легкий класс» с тягой от 14 до 16 кг., кроме одного мотора.

Minn Kota Endura Pro 32

minn_kota2

Электромотор для лодок Minn Kota Endura Pro 32 с максимальной тягой в 14,5 кг. и мощностью 0,43 л.с. готов тянуть лодку общей массы до 680 кг.

  • Штанга у мотора — 76 см.
  • Вес — 7,3 кг.
  • Передачи — 5 вперед, 3 назад
  • Винт — двухлопастной

В особенности этой модели можно записать то, что штанга у него сделана из композитного материала. Ну и кроме всего прочего Minn Kota уже давно является законодателем мод в лодочном электромоторостроении. Качественная сборка, качественные материалы, надежность. И этот мотор как раз был у нас б/у, с пробегом более 3-х лет. Никаких нареканий на него у владельца за время работы не было. Ничего не ремонтировалось и по сей день все работает исправно.

Flover F33T

flover2

Лодочный электромотор Flover F33T от известного бренда с тягой 15 кг, мощностью 0,44 л.с., предназначен для надувных лодок с массой до 800 кг.

  • Штанга — 75 см.
  • Масса — 6,8 кг.
  • Передачи — 5 вперед, 3 назад
  • Винт — двухлопастной

Внешне моторы от Minn Kota и Flover очень похожи, но что будет на деле, посмотрим. Из интересных особенностей у F33T светодиодный индикатор уровня заряда аккумулятора, что очень удобно. Но по отзывам на форумах не все от этого в восторге, кто то говорит, что эта функция заметно «кушает» энергию. Посмотрим. Flover F33T мы получили новым, еще не распакованным.

Outland TP 34

Электромотор для лодки модели Outland TP 34 с максимальной тягой 15,4 кг, мощностью 0,47 л.с. и по заявлениям производителя готов тянуть лодку до 1,1 тонны снаряженной массы. Ничего себе такое обещание, по сравнения с Flover и Minn Kota практически в два раза больше. Остальные то характеристики примерно одинаковые. Посмотрим, что даст тест.

  • Штанга — 78 см.
  • Масса — 6,7 кг.
  • Передачи — 5 вперед, 2 назад
  • Винт — двухлопастной
outland342

Это еще один мотор б/у, который успешно отходил 2 сезона, не доставив проблем своему владельцу.

Outland TP 44

Лодочный электромотор Outland TP 44 с максимальной тягой аж 19,9 кг. и мощностью 0,59 л.с. Масса судна, которое он сможет тащить составляет 1350 кг, опять же по заявлениям производителя.

  • Штанга — 91 см.
  • Масса — 9,55 кг.
  • Передачи — 5 вперед, 2 назад
  • Винт — трехлопастной

Этот экземпляр попал к нам не новым, но и не сильно потрепанным. Он использовался менее сезона, проблем и нареканий у владельца не вызвал. В плюсы мы бы записали то, что штанга у TP 44 металлическая и винт уже трехлопастной. Это самый мощный электромотор на нашем тесте и он наверное все таки выходит за рамки «самых популярных».

Haibo ET 34L

haibo342

Электромотор Haibo ET 34L внешне и конструктивно идентичен моторам от Outland. Можно даже предположить, что они вышли из одного и того же цеха/завода. И это подтверждает то, что характеристики то у них одинаковые. И также предназначен для лодки с водоизмещением 1100 кг.

  • Тяга — 15,4 кг.
  • Мощность — 0,47 л.с.
  • Штанга — 78 см.
  • Масса — 6,7 кг.
  • Передачи — 5 вперед, 2 назад
  • Винт — двухлопастной

Еще один электромотор б/у с пробегом более трех сезонов и опять же без жалоб и поломок от владельца. По поводу Haibo в интернете ходит такая байка, что на 5-ой передаче он может «сделать» любого из своих одноклассников. Вот как раз и проверим.

Собственно сам тест электромоторов для лодок

Прежде чем приступить к полевым испытаниям мы решили немного препарировать наших сегодняшних подопечных, а точнее взвесить, измерить и … пожалуй этого достаточно. Начнем с веса электромоторов. Взвешивание проходило на настольных весах «Невские», у которых предельное ограничение 15 кг. Из таблицы (см. ниже) видно, что фактические, т.е. наши, результаты массы несколько отличаются от тех, которые были заявлены производителями. А Minn Kota так вообще 700 грамм утаил, а это уже существенная разница. Наверное американцы не просчитали реальный вес композитной ноги-штанги.

Так же была измерена сила потребляемого моторами тока на каждой передаче (см. в Таблице 2).

Таблица №1 — измерение веса

МоторЗаявленный весРеальный вес
Minn Kota Endura Pro 327,36,58
Flover F33T6,86,92
Outland TP 346,76,76
Outland TP 449,559,46
Haibo ET34L6,76,84

Таблица №2 — измерение силы тока

Мотор/ПередачаСила тока, мА
12345
Minn Kota Endura Pro 326,59141930
Flover F33T810142030
Outland TP 34911162040
Outland TP 441214252852
Haibo ET34L911162040

А для чего собственно измерять силу потребляемого тока у электромоторов, можете спросить вы. А тут все просто — чем выше потребление — тем, теоретически, выше его полезная мощность. Если обратить внимание на Таблицу №2, то можно заметить, что у моторов-одноклассников потребление тока на одинаковых передачах различается не значительно, что и говорит, что они и по скорости должны быть очень близки друг к другу. Если бы мы увидели, что у одного из них показания сильно отличаются от остальных, то это указало бы на разницу в КПД.

Еще можно заметить, что у мощного Outland TP44 потребляемый ток на 4-ой передаче такой же как у Minn Kota на 5-ой. Чувствуете о чем мы намекаем? Посмотрим как у них будет дело со скоростью. Ну и наконец, о чем мы уже говорили выше, Haibo 34 и Outland 34 выдают одни и те же показатели по току, что еще раз подтверждает, что это моторы-близнецы.

Тест максимальной скорости

Скорость, как мы уже говорили, измеряли с помощью обычного, по сути бытового GPS навигатора Garmin Oregon 200. Погрешности нам не избежать, но в пользу достоверности наших результатов можно записать то, что все испытуемые электромоторы были в одинаковых условиях. Замеры скорости выглядели так: Электромотор вешался на надувную лодку Кайман 330 и затем эта парочка преодолевала расстояние от точки А до точки Б и обратно. Расстояние в один конец равнялось 0,34 км. по показаниям нашего навигатора. Каждый мотор проходил расстояние А-Б-А на каждой из своих 5-ти передач поочередно и максимальная скорость на этом маршруте и попала в таблицу. Каждый мотор испытывался с разной загрузкой — один, два и три пассажира на борту лодки, что соответствует значениям в таблице по загрузке 80, 160 и 220 кг. Вес снаряжения и самого тягового аккумулятора не учитывался, а это еще как минимум 40 кг. Заметим что путь от А до Б был по ветру, а обратно от Б до А уже против. Так же вы в таблице найдете среднее значение от этих замеров.

Таблица №3 — максимальная скорость

Minn Kota Endura Pro 32
ПередачаЗагрузка 80 кг.Загрузка 160 кг.Загрузка 220 кг.
А-ББ-АСреднееА-ББ-АСреднееА-ББ-АСреднее
12,52,12,32,22,12,22,42,02,2
22,62,62,62,72,52,62,82,62,7
33,13,03,13,23,03,13,02,82,9
43,53,23,43,63,43,53,73,63,6
54,94,74,84,84,64,74,84,44,6
Flover F33T
ПередачаЗагрузка 80 кг.Загрузка 160 кг.Загрузка 220 кг.
А-ББ-АСреднееА-ББ-АСреднееА-ББ-АСреднее
12,32,02,22,42,22,32,62,22,4
22,52,52,52,92,72,82,82,92,8
33,93,53,73,73,63,73,53,33,4
44,24,14,34,14,04,13,74,03,6
55,14,95,05,04,84,94,94,8,49
Outland TP34
ПередачаЗагрузка 80 кг.Загрузка 160 кг.Загрузка 220 кг.
А-ББ-АСреднееА-ББ-АСреднееА-ББ-АСреднее
12,72,32,52,42,12,32,52,22,3
22,92,52,72,62,92,72,62,42,5
33,53,03,33,23,43,33,33,23,3
44,13,63,93,94,04,04,13,94,0
55,24,95,15,04,95,05,04,95,0
Outland TP44
ПередачаЗагрузка 80 кг.Загрузка 160 кг.Загрузка 220 кг.
А-ББ-АСреднееА-ББ-АСреднееА-ББ-АСреднее
12,22,12,22,52,32,42,62,22,4
22,62,52,62,92,82,93,12,93,0
33,63,53,63,63,53,63,53,33,4
44,23,94,13,93,83,94,04,04,0
55,25,15,25,15,05,15,55,45,5
Haibo ET34L
ПередачаЗагрузка 80 кг.Загрузка 160 кг.Загрузка 220 кг.
А-ББ-АСреднееА-ББ-АСреднееА-ББ-АСреднее
12,32,12,22,52,12,32,72,02,4
22,72,62,72,82,62,73,22,52,9
33,63,33,53,33,33,33,73,13,4
44,33,94,13,93,83,94,23,63,9
55,55,35,45,55,35,45,35,25,3

По результатам тестов видно, что, как и ожидалось, самым мощным оказался Outland TP44, он и показал максимальную скорость. Но, что удивительно, малыш Haibo ET34L очень близко приблизился к результатам лидера, особенно это видно при загрузке 80 и 160 кг, а при 220 и на 5-ой передаче даже обошел его. А вот предполагаемый брат-близнец Outland TP34 показал результаты похуже, значит что-то в этих двух моторах отличается внутри, хотя снаружи они одинаковые. В целом, можно сказать, что результаты получились ровные и более менее предсказуемые.

Еще интересно то, что максимальная скорость фиксировалась при максимальной же загрузке лодки, за исключением хода на 3 и 4 передачах. Это, скорее всего, объясняется совокупностью факторов, от гидродинамических характеристик лодки до ее оптимальной загрузке, при которой она показывает лучшие результаты на ходу. Ну сюда можно еще и приписать несовершенство как наших измерительных приборов, так и наших методик ))). Но еще раз хотим напомнить — все лодочные электромоторы находились в равных условиях.

Приз «я тихоход» получает американский Minn Kota, как в принципе и ожидалось, но окончательные выводы пока делать рано и кого бы то ни было списывать еще не пришло время. Впереди тест на потребление электричества.

Далее мы повторили тест максимальной скорости, но уже на надувной лодке Кайман 380, дабы сравнить результаты. Имитировать разную загрузку уже не стали, а ограничились лишь 160 кг. Провидцы тут сразу должны высказать — «что тут мерить, и так понятно, чем легче и меньше лодка, тем скорость будет выше.» Но спешу вас огорчить — вы не правы. Все электромоторы, за исключение лишь одного, показали те же самые результаты максимально скорости что и на Кайман 330. Как такое может быть? А вот как. Равномерность загрузки 380-ой была оптимальнее из-за ее длины. Так же мореходные качества ее лучше по сравнения с 330 моделью. Да и самым главным фактором таких результатов является то, что скорости лодок под электромоторами далеко не космические и даже не велосипедные и привычные нам законы физики здесь не работают в такой ярко выраженной манере, а может и работают но в обратную сторону.

А наш сегодняшний лидер Outland TP44 на большей лодке показал еще большую скорость 5,6 против 5,1 км/ч. Но тут еще могло сыграть то, что штанга его длиннее чем у других электромоторов и для Кайман 380 она более оптимально подошла, т.к. для лучшего толкания большой лодки «плечо» должно быть больше.

Экономичность электромоторов для лодок

Это тестирование проводилось для того, чтобы определить длительность работы каждого мотора на одной передаче от аккумулятора 100 Ah. Испытание очень длинное и муторное, т.к. зарядка такой батареи длиться более 24 часов. Так что времени на это мы убили массу. Смотрите таблицу.

Таблица №5 — Расход электричества

Мотор/ПередачаВремя жизни АКБ 100 ah (часы)
12345
Minn Kota Endura Pro 3213,89,86,14,52,8
Flover F33T11,38,86,14,32,6
Ouland TP 3410,08,05,44,32,1
Ouland TP 447,56,33,43,01,7
Haibo ET34L10,08,05,44,32,1

Все результаты в этой таблице выглядят вполне логично. Самым стойким оказался самый маломощный Minn Kota, а самым прожорливым стал самый мощный Outland TP44.

Тест работы лодочных электромоторов на разных аккумуляторах

Мы проверили как чувствует себя батарея после нескольких лет использования. Лодка Кайман 380, мотор Haibo ET34L, загрузка 160 кг., аккумуляторы 100 Ah (новый) и 95 Ah (старый). Как итог, правильное и бережное использование аккумуляторов никак не сказывает на их эффективности, даже по прошествии 3 лет. Результаты старого были практически не отличимы от показателей нового. Вот основные правила, которые нужно учитывать если вы активно используется электромоторы с аккумуляторами:

  • Свинцовые АКБ — не пригодны для использования с лодочными электромоторами, т.к. не переносят глубокого разряда
  • Свинцовые тяговые АКБ — пригодны для использования с лодочными электромоторами, т.к. переносят глубокий разряд, но их нельзя хранить в таком состоянии (осыпаются свинцовые пластины)
  • Гелевые АКБ — очень пригодны для электромоторов, переносят глубокий разряд, можно хранить практически в любом состоянии, НО, цена на них в ДВА раза выше классических свинцовых тяговых.

Тяговый свинцовый аккумулятор нормально переносит 400 циклов заряда/разряда (это около 5 лет). Главное не заряжать его высокими токами (не более 10 А) и не хранить в разряженном виде.

Тест на выносливость

Тут уже идут не полевые испытания и расчетные тесты. Мы хотим определить как далеко можно уплыть на электромоторе на каждой из передач. Мы знаем среднюю скорость, мы знаем максимальное время работы на передаче от полностью заряженного АКБ, осталось перемножить эти данные и мы получим расстояние. И уже станет ясно, так ли благоразумно покупать мощный электромотор? Может лучше купить менее мощный, разница в скоростях у них практически не заметно, а вот энергию мощные потребляют значительно больше.

Таблица №6 — Дальность хода

Мотор/Передача12345
Minn Kota Endura P3230,425,518,915,813,2
Flover F33T26,024,622,617,612,7
Outland TP 3423,021,617,817,210,5
Outland TP 4418,018,312,211,78,2
Haibo ET34L10,021,617,816,811,3

Таблица показывает вполне логичные и зависимые данные. Чем ниже передача, тем меньше потребляется ток и тем дальше можно проплыть на лодке. Первые три передачи используются крайне редко и на них останавливаться мы не будем, а вот 4 и 5 посмотри поподробнее.

Самым долгоиграющим оказался Minn Kota. Вторым стал Flover и это не смотря на то, что у него есть светодиодный индикатор заряда батареи, так что миф о его большом потреблении думается развеян. На третье место поднялся Haibo, а на четвертое Outland 34. Ну и замыкает наш рейтинг живучести самый мощный из протестированной пятерки моторов Outland TP 44.

Небольшие выводы по результатам тестов

…И спросила кроха, — «что такое «хорошо» и что такое «плохо»». На этот вопрос мы отвечать не будем, каждый из вас ответит на него сам, пропустив результаты тестов через призму своих расходов на приобретение, преследуемых целей и еще только ему ведомых причин и ограничений. Мы же здесь постарались ответить на вопросы, поставленные в самом начале повествования и, думается, ответы получены и дана пища для размышления. Выбирайте то, что вам больше подходит.

Лодочный электромотор — 120 фото моторов ведущих производителей. ТОП рекомендаций по выбору и применению

Все чаще и чаще рыбаки на рыбалке используют различного рода лодки или катамараны. Но при большом водоеме грести на веслах довольно утомительное дело и кроме этого занимает массу времени. Поэтому каждый рыбак старается поставить на свою лодку мотор. Причем моторы могут быть разные , начиная от привычного бензинового и заканчивая электромотором.

Фото лодочного электромотора издалека очень напоминает своего бензинового брата, но если присмотреться ближе, то можно заметить несколько весьма важных различий.

Краткое содержимое обзора:

Почему именно электромотор?

Среди рыбаков бытует мнение, что рыбалка любит тишину. Чего нельзя сказать о лодке с бензиновым мотором.

Особенно ранним утром звук работающего бензинового двигателя слышен по воде за десятки километров. Кроме этого этот звук абсолютно не радует рыбу, а проще сказать распугивает ее.

Поэтому рыбаки стараются переходить на электромоторы, если только расстояния которые необходимо покрыть рыбаку не так уж велики.

Какие бывают лодочные электромоторы?

Схема работы всех лодочных электромоторов практически одна и та же. Электромоторы отличаются в первую очередь местом установки и по этому принципу их все можно разделить на три отдельные группы:

Подвесные электромоторы по способу своего крепления практически не отличаются от бензиновых и крепятся на транце лодки. Имеют привычную схему крепления. Легко устанавливаются и также быстро снимаются и перемещаются в другое место.

Лодочные электромоторы тест на скорость и экономичность

Лодочные электромоторы тест на скорость и экономичностьДля каких лодок подходят электромоторы? А какова средняя скорость под ними? На сколько часов хватает заряда аккумулятора? Правда ли, что все лодочные электромоторы одинаковы? Можно ли рассматривать их как замену двигателю внутреннего сгорания? Стандартный ворох вопросов, который обрушивается на голову каждому, кто планирует обзавестись мотором на электрической тяге для своей лодки. Вот мы и решили вдарить тестом на злобу дня. Идея проста: взять две разных по длине надувных ПВХ-лодки, пару тяговых аккумуляторов и несколько лодочных электромоторов, после чего провести испытания на воде. Задачи понятны — ответить на вопросы, перечисленные выше.

 

Что мы сделали?

Мы взяли лодочные электромоторы четырех разных производителей, наиболее широко представленных сегодня на рынке — Minn Kota, Outland, Haibo и Flower. Дополнительно удалось взять в тест две модели одного производителя с различными тяговыми характеристиками — Outland ТР44 и ТР34, дабы выяснить, чем же они отличаются, кроме циферок на корпусе. Некоторые из испытуемых лодочных электромоторов были совершенно новыми, иные давно эксплуатировались. Это нас нисколько не смутило, а, напротив, даже заинтересовало. Уж больно хотелось раскрутить еще один вопросец: как изменяются с ходом времени рабочие характеристики электромоторов. Далее отправились на водоем, где все это добро подвергли самым что ни на есть ходовым испытаниям. Отметим, что в наши цели не входило получить сухой статистический материал. Нам хотелось большего — сформировать по итогам обоснованное мнение о том, как ведут себя разные лодочные электромоторы на разных лодках пвх.

Материалы

Для тестов мы избрали две надувных лодки-пвх от «Мнева» модели «Кайман». Первая — длиной 330 см, вторая — 380 см. Причины на то были веские.

Во-первых, «Кайман» — весьма популярная модель, выпускаемая второй десяток лет — в общем, классическая лодка-пвх с классическими же формами и конструкцией (фото 1).

Лодочные электромоторы тест на скорость и экономичность

 

Во-вторых, эта модель имеет массу подражателей среди других фирм, потому, выбрав ее, мы автоматически перекрываем широкий диапазон из лодок, встречающихся на наших водоемах. Неслучайны и эти два типоразмера — 330 и 380 см — наиболее популярные и универсальные, применимые и на небольших лесных озерах, и на просторах крупных рек или водохранилищ. К тому же это уже серьезные, довольно большие лодки-пвх — было любопытно, как с ними совладают наши лодочные электромоторы.

Для тестов мы взяли два аккумулятора емкостями 95 и 100 А/ч (фото 2), оба кислотные и тяговые.

Лодочные электромоторы тест на скорость и экономичность

 

И если «сотка» была практически новой — за ее плечами числилась лишь пара рыбалок, то «95-й» эксплуатировался более трех лет и пережил порядка двухсот циклов заряда, почти половину его ресурса. Таким образом, мы хотели проследить, как изменятся характеристики испытуемых лодочных электромоторов вкупе с такими разными аккумуляторами.

Замеры скорости производились при помощи бытового GPS-навигатора Garmin Oregon 200 (фото 3), для определения значений силы тока и напряжения в цепи во время движения нами использовался вольтамперметр Ц4324 (фото 4).

 

 

Место и условия испытания лодочных электромоторов

Для испытаний мы выбрали весьма популярное у минчан место отдыха — Заславское водохранилище, как его еще называют — Минское море. Чтобы читатель мог представить себе возможную высоту волны или силу ветра, которые, безусловно, наложили свой отпечаток на результаты тестирования, опишу наше море. Площадь его водной поверхности около 31,1 км2. В длину — под 10 км, ширина — 4,5 км. Стандартные глубины — 3,5 м, хотя есть и в 8 м. В день испытаний выдалась малооблачная погода с легким северо-западным ветром скоростью 3-5 м/с.

О лодочных электромоторах

Каждый уважающий себя производитель лодочных электромоторов имеет в своей линейке не менее четырех моделей, различающихся между собой мощностью, а, следовательно, тяговыми характеристиками, габаритными размерами и весом.

Так, тяга самых маленьких в линейке моделей — менее 13 кг (около 0,38 л. с.) и рассчитаны они, как правило, для лодок полной снаряженной массой до 600 — 800 кг, в то время, как самые мощные экземпляры лодочных электромоторов развивают тягу до 25 кг (0,85 л. с.) и могут применяться на судах водоизмещением до 1,5 т и более. Мы преднамеренно избрали для тестов электромоторы со схожими тяговыми характеристиками — это легкие модели для небольших и средних лодок, с заявленными показателями 32 — 34 lbs, т. е. 14,5–15,5 кг.

Испытуемые лодочные электромоторы при первом осмотре

Лодочный электромотор Minn Kota Endura Pro 32

Лодочный электромотор Minn Kota Endura Pro 32 (фото 6). Максимальная тяга в толчке 32 lbs = 14,5 кг (на 5-й передаче), мощность 0,43 л.с., рассчитан для лодок со снаряженной массой до 680 кг, длина штанги 76 см. Вес электромотора согласно «мануала» — 7,3 кг. Количество передач — 5 вперед + 3 назад. Винт — двухлопастной. Особенности: штанга из композитного материала. Ну и, конечно, нельзя не сказать, что Minn Kota — признанный законодатель мод в этой сфере. Отсюда и качество сборки и материалов. Тестируемый нами лодочный электромотор эксплуатируется более трех лет. И, что характерно, никакого ремонта не требует и по сей день.

Лодочные электромоторы тест на скорость и экономичность

 

Лодочный электромотор Flover F33T

Лодочный электромотор Flover F33T (фото 7). Тяга в толчке, понятно, 33 lbs, это 15 кг. Мощность 0,44 л. с. Рассчитан для лодок со снаряженной массой до 800 кг. Длина композитной штанги 75 см, вес заявленный — 6,8 кг. Количество передач 5/3. Винт двухлопастной. Невооруженным взглядом видно внешнее сходство Flover с Minn Kota (фото 8). Что ж, это интригует — окажется ли сходство только внешним? Особенности: у модели предусмотрен светодиодный индикатор уровня заряда аккумулятора (фото 9). Отзывы об этой опции весьма противоречивы — от восторженных до отрицательных, ввиду увеличения потребления электроэнергии электромотором. Flover F33T попал к нам еще в заводской упаковке.

Лодочные электромоторы тест на скорость и экономичность

 

Лодочный электромотор Outland TP 34

Лодочный электромотор Outland TP 34 (фото 10). Максимальная тяга в толчке 34 lbs = 15,4 кг, мощность 0,47 л. с. Производитель утверждает, что он рассчитан на снаряженную массу лодки до 1100 кг. Заявленный вес — 6,7 кг Длина штанги 78 см. Количество передач 5/2. Винт двухлопастной. На момент тестирования эксплуатировался более двух лет. Проблем за время использования не возникало. Обратите внимание, как отличаются заявленные значения допустимой массы лодки, с которой применимы Outland TP 34 и Minn Kota Endura Pro 32: разница почти в два раза! 1100 против 680 кг. Это интригует, поскольку остальные заявленные параметры у этих двух лодочных электромоторов если и отличаются, то несущественно. Выходит, что либо кто-то перестраховывается, либо кто-то дает нереальные цифры — надеемся, это прояснится в тесте.

Лодочные электромоторы тест на скорость и экономичность

 

Лодочный электромотор Outland TP44

Лодочный электромотор Outland TP44 (фото 11). Максимальная тяга в толчке 44 lbs = 19,95 кг. Мощность 0,59 л. с. Максимальное водоизмещение лодки до 1350 кг. Вес лодочного электромотора по паспорту 9,55 кг. По конструкции аналогичен младшей модели ТР34. На момент тестирования электромотор находился в эксплуатации неполный сезон, нареканий не вызывал. Из особенностей — металлическая штанга длиной 91 см и трехлопастной винт, что говорит о том, что электромотор применим на довольно крупных катерах с высоким бортом. Именно этот агрегат выходит за рамки выбранного для тестирования «легкого класса» лодочных электромоторов.

 

 

Лодочные электромоторы тест на скорость и экономичность

 

 

Лодочный электромотор Haibo ЕТ 34L

Лодочный электромотор Haibo ЕТ 34L (фото 12). Лодочный электромотор по конструкции и внешнему виду просто идентичен с Outland. Более того, рискнем предположить, что произведены они на одном заводе — ну просто братья-близнецы! Поэтому нас нисколько не удивило, что и заявленные характеристики у этих двух электромоторов одни и те же: максимальная тяга в толчке 34 lbs = 15,4 кг, мощность 0,47 л. с, водоизмещение лодки до 1100 кг. Длина штанги 78 см, вес электромотора 6,7 кг. Попал к нам в руки б\у — около трех лет без жалоб на недомогания. Интрига в том, что в Интернет-сообществе активно муссируются слухи, что, якобы, Haibo при движении на последней, пятой скорости «делает» подчистую всех своих одноклассников и даже некоторые электромоторы, что помощнее. Это, понятное дело, мы тоже сегодня проясним.

Приступим к тесту лодочных электромоторов

Для начала мы взвесили каждый из тестируемых лодочных электромоторов. Измерения производились на настольных весах «Невские» (фото 13) с пределом в 15 кг. Как видно из таблицы 1, наши результаты немного отличаются от тех, что заявляет производитель. Самая большая разница у Minn Kota Enduro Pro 32 — он легче более чем на 700 гр, а это, согласитесь, существенно. Видимо, американцы недооценили легкость композитной штанги.

Далее мы последовательно измерили силу потребляемого тока для каждой передачи каждого электромотора. Результаты приведены в таблице 2.

Лодочные электромоторы тест на скорость и экономичность

 

Для чего потребовалось измерять силу тока? Дело вот в чем: при прочих равных условиях, из двух лодочных электромоторов быстрейшим будет тот, который потребляет более высокие токи. То есть, эта таблица дает наметки к будущим скоростным испытаниям и позволит в дальнейшем, вкупе с результатами замеров скорости лодок-пвх о КПД испытуемого лодочного электромотора. На что здесь стоит обратить внимание?

Во-первых, из таблицы 2 видно, что значения силы тока на соответствующих передачах у электромоторов-одноклассников если и отличаются, то незначительно. Это косвенно указывает на то, что и скорости у них должны быть примерно равны при прочих равных. Если же обнаружится серьезная разница — значит, КПД у лодочных электромоторов разный.

Во-вторых, обратите внимание, что у Minn Kota Enduro Pro 32 на 5-ой передаче потребление тока почти такое же, как у самого мощного Outland ЕТ 44 на 4-й передаче. Улавливаете, к чему клоним? Проверим, будет ли у них одинаковая скорость.

В-третьих, у Haibo ET34L и Outland ЕТ 34 значения показателей силы тока — идентичны. Это еще один повод утверждать, что эти лодочные злектромоторы имеют одного родителя.

Сравнивая Minn Kota Enduro Pro 32 и реплику от Flover можно видеть схожие данные. Различия возникают только на первой, второй и четвертой скоростях. При этом надо учесть тот факт, что Flover копирует, скорее всего, новый мотор ЗОС, появившийся в 2012 г., тогда как у нас Minn Kota’вский электромотор — трехлетней давности.

Тест лодочных электромоторов на максимальную скорость

Напомним, что измерения скорости производились при помощи GPS-навигатора Garmin Oregon 200.Разумеется, погрешности приборов GPS для невоенных целей нам здесь никак не избежать. Впрочем, все испытуемые находились в равных условиях. Измерения проводились следующим макаром: надувная лодка-пвх «Кайман 330» оборудовалась испытуемым электромотором, после чего преодолевала расстояние между двумя заданными точками на водохранилище. Для всей серии испытаний точки эти, а, значит, и вектор направления движения, оставались неизменными — в нашем случае это расстояние от пристани до острова, которое равнялось 0,34 км согласно показаниям навигатора. Причем при движении от пристани к острову ветер преобладал попутного направления, а обратно — контровой. Этот маршрут берег — остров — берег преодолевался на каждой из пяти передач поочередно, а значение максимальной скорости (в км/ч) за время прохождения трека мы и поместили в таблицу 3.

Лодочные электромоторы тест на скорость и экономичность

 

Все испытания проводились трижды — с одним, двумя и тремя пассажирами на борту — этим значениям соответствуют графы с загрузкой в 80, 160 и 220 кг соответственно. Ради чистоты эксперимента, отметим, что масса аккумулятора и снаряжения в лодке нами не учитывались, хотя это еще около 40 кг. Кроме того, мы зафиксировали скорость по ветру и против — и вывели значения средней скорости, которую вы тоже можете видеть в таблице 4 для каждого случая.

Лодочные электромоторы тест на скорость и экономичность

 

Как и должно было случиться, самый мощный лодочный электромотор Outland TP44 показал и самую высокую скорость по результатам всех испытаний. Однако нас немало удивил факт, что Haibo ET34L вплотную приблизился к нему при загрузке в 220 кг, а при загрузке в 80 и 160 кг на 5-ой передаче оказался даже чуть быстрее! Любопытно и то, что клон Haibo ET34L — модель Outland TP34 — показал результаты похуже лидеров. Выходит, нутро у Outland и Haibo все-таки отличается. В целом результаты получились довольно ровные. Единственное, что выходит за рамки этого красивого ряда — значения скорости, полученные нами для Outland TP44.

Обратите внимание, что при движении на всех передачах, за исключением разве что 3-й и 4-й, значения максимальной скорости фиксировались, как это ни парадоксально, при максимальной же загрузке лодки. Как это объяснить? Думается, ответ кроется в совокупности причин: начиная от изменений в лучшую сторону в гидродинамических параметрах лодки при достижении оптимальной загрузки до несовершенства измерительных приборов и методики. В любом случае, исходим из того, что условия испытаний оставались неизменными для всех моделей.

Самый медленный результат ожидаемо показала самая миниатюрная модель Minn Kota Endura Pro 32. Однако не будем спешить с окончательными выводами, повременим до второго, не менее важного теста «Расход электричества».

Не упомянули только Flover 33T. У него, в общем и целом, очень неплохие результаты. Значения скорости лодки под этим лодочным электромотором находятся ровно там, где должны быть: между Endura Pro 32 с одной стороны и более мощными ET34L и ТР34 с другой. Далее мы повторили испытания лодочных электромоторов, только на большей лодке «Кайман 380». Делали мы это на сей раз только единожды — при загрузке 160 кг, с целью сопоставить результаты с меньшей лодкой.

 

 

Выводы по лодочным электромоторам мы уже сделали. Теперь сравним результаты одних и тех же электромоторов на разных лодках. Честно говоря, результаты вышли не совсем те, которые мы ожидали. Думалось, что на меньшей лодке (читаем более легкой, с меньшим лобовым сопротивлением и т. д.) наши лодочные злектромоторы однозначно покажут более высокие скорости. На деле же вышло вот что: все электромоторы, кроме одного, показали примерно одинаковые результаты при использовании на двух разных лодках. Как такое возможно?

Ну, во-первых, предположим, что лодка «Кайман 380» была лучше (равномернее) загружена в отличие от «330-го» при испытаниях с двумя и тремя людьми на борту. Во-вторых, у «380-го» более высокие мореходные качества, в нашем случае она меньше зарывалась в волну, которая хоть и была небольшой, но все же наложила свой отпечаток. В-третьих, в случае с лодочными электромоторами мы имеем дело, как видите, со скоростями далеко не космическими. Скорее, это показатели пешехода с твердой походкой. Вот и получается, что здесь законы физики, которые мы привыкли учитывать при глиссировании, не действуют — или действуют обратным порядком.

Что до самого мощного в нашем сегодняшнем тесте Outland ТР44, то он и вовсе на большей лодке показал большую среднюю скорость 5,6 км/ч против 5,1 км/ч. Единственным логичным объяснением кроме всего вышеперечисленного здесь является длина штанги. Для большей лодки необходимо более длинное плечо — чтобы отвести толкающую силу. В данном случае, используя одинаковую длину штанги (а глубину погружения лодочного электромотора мы оставляли фиксированной для всех опытов), в случае с лодкой «Кайман 380» она оказалась «правильнее» подобранной, нежели для меньшей «Кайман 330», что и позволило достичь более высокой скорости.

Тест на экономичность лодочных электромоторов

Суть данного тестирования — определить, сколько сможет проработать лодочный электромотор на каждой включенной передаче от полностью заряженного аккумулятора емкостью 100 А/ч. Метод испытаний — самый что ни на есть эмпирический. Не спрашивайте, сколько по времени длилось это тестирование… Скажем только, что одно время зарядки аккумуляторной батареи такой емкости — более 24 часов. Результаты — в таблице 5.

Лодочные электромоторы тест на скорость и экономичность

 

Здесь все смотрится последовательно. Самым долгоиграющим на пятой скорости, как и ожидалось, стал миниатюрный Minn Kota Enduro Pro 32, оно и логично — самый маломощный и экономичный. Самый низкий показатель, как и полагается, у самого мощного, а значит, энергоемкого Outland ТР 44.

Тест на время работы лодочных электромоторов на разных аккумуляторах

Тест призван проверить, насколько падают характеристики аккумуляторных батарей по мере эксплуатации, то бишь износа последней. Так, для лодки «Кайман 380» с загрузкой в 160 кг! и мотором Haibo ET34L мы провели испытания с тяговым кислотным аккумулятором емкостью 100 А/ч и дополнительно — с емкостью 95 А/ч, что интенсивно эксплуатировался 3 года (ресурс — примерно 50%).

Как видите, при правильном использовании аккумулятора практически не теряет своих свойств на протяжении всего срока эксплуатации — результаты почти не отличаются от показателей нового аккумулятора. Напомним только основные отличия-правила:

— свинцовый АКБ — не переносит глубокого разряда, не годится для лодочных элекромоторов;

— свинцовый тяговый — переносит глубокий разряд, но не переносит длительного хранения в таком состоянии (иначе осыпаются пластины — теряется емкость), годится для лодочных электромоторов;

— гелевый — переносит и глубокий разряд, и хранение, годен для лодочных электромоторов, однако при всех своих достоинствах примерно в два раза дороже свинцового аналогичной емкости.

Срок службы свинцового тягового аккумулятора при надлежащей эксплуатации около 400 циклов (4 — 5 лет). Основное правило: не заряжать аккумулятор высокими токами — максимум 8–10 А.

Тест на пробег без дозаправки

Основная мысль последнего теста, уже расчетного — определить, насколько эффективны мощные лодочные электромоторы. Ведь скорость совсем «на чуть- чуть» больше, а время жизни — намного меньше. Сделаем нехитрые подсчеты: перемножим полученные нами в предыдущих тестах значения времени работы электромотора до полной разрядки аккумулятора и среднюю скорость в км/ч этого же электромотора. Лодка — «Кайман 380», загрузка 150 кг. Результаты — в таблице 6.

Лодочные электромоторы тест на скорость и экономичность

 

Как видно из таблицы 7, чем меньше передача, а значит — потребляемый ток, тем большее расстояние можно проехать на данном электромоторе. Если первые три передачи практически неинтересны ввиду редкого использования, то на, 4-й и 5-й остановимся подробнее.

Снова самым лучшим показателем обладает Minn Kota Enduro Pro 32. Прямо реклама получается, но против цифр не попрешь. На втором месте — аналог, Flover ЗЗТ, и это несмотря на дополнительное потребление светодиодного индикатора. Третье место — у Haibo ET34L, а четвертое — у Outland ТР 34. Стоп! Вроде же Haibo ET34L и Outland ТР 34 — одинаковые лодочные электромоторы, просто в разных «обертках». Как так? На четвертой передаче Haibo проживет меньше, чем Outland, а на пятой — наоборот. Видимо, все же не совсем одинаковые.

Лодочные электромоторы тест на скорость и экономичность

 

Чтобы пролить свет на этот вопрос, мы даже провели дополнительные измерения потребляемого электромоторами тока и напряжения в сети. Так вот, эти значения оказались идентичными, а это может говорить только о том, что электродвигатели разные. Разбирать не приходилось, но можно предположить, что стартеры и обмотки разные, а, может, разное расстояние между якорем и стартером. Сказать сложно, но одно очевидно при сопоставимых значениях потребления, электромоторы «едут» по-разному. Последнее место ожидаемо у Outland TP 44. Что тут скажешь, кроме как «лошади хотят кушать». Тяговые характеристики у него выше, чем у остальных, посему расходует он больше электричества, но при этом и идет быстрее.

Выводов о том, что такое «хорошо» и что такое «плохо», вы сегодня не дождетесь. Глобальных отличий в эксплуатационных характеристиках современных лодочных электромоторов, как оказалось, не существует. Кроме того, каждый принимает решение в пользу того или иного, руководствуясь своими собственными соображениями и системой критериев, да и просеивает потом вдобавок через решето бюджета. Что до ответов на поставленные в начале статьи вопросы, то, думается, большинство из них мы по ходу пьесы не оставили без внимания.

О. Ляльковский, Д. Самесов

Как выбрать электромотор для надувной лодки

Сегодня заядлому рыбаку трудно представить себе процесс рыбалки с надувной лодки без использования дополнительного подвесного электрического мотора. Бесшумные и достаточно мощные, они используются в тех случаях, когда применение бензиновых двигателей невозможно, затруднено или запрещено.

Для чего используются электромоторы

Как выбрать электромотор для надувной лодки

Рыбалка в прибрежной части или режим троллинга, при котором определяющей является скорость движения приманки, невозможны без использования электрического мотора. Бензиновый двигатель не может постоянно поддерживать минимальные обороты и выдерживать необходимую для троллинга скорость в 3-5 км/ч, с чем прекрасно справляется электромотор. Его наличие позволяет увеличить манёвренность надувной лодки и рыбачить в местах с густой растительностью и недостаточной глубиной, так как гребной винт электромотора в состоянии работать в полупогруженном состоянии.

Преимущества лодочных электромоторов по сравнению с бензиновыми двигателями:

  • Форма лопастей гребного винта электрического мотора разработана таким образом, чтобы не допустить возможности зацепиться за водоросли или траву;
  • Новые конструктивные решения и использование современных аккумуляторов позволили существенно увеличить запас хода. Современные моторы позволяют рыбачить весь день, ночью аккумулятор заряжается и утром он снова готов к работе;
  • Лёгкость и компактность конструкции, вес самого тяжёлого мотора – не более 10 кг;
  • Мгновенный запуск;
  • Бесшумность;
  • Минимальные затраты на эксплуатацию.

Недостатки электрических моторов:

  • Не слишком большой запас хода, по сравнению с бензиновым двигателем;
  • Для лодок длиной 7-8 метров скорость не превышает 10 км/ч;
  • Невозможность использования при сильном течении и встречном ветре.

Однако все эти недостатки нивелируются присутствием на лодке основного – бензинового двигателя.

Технические характеристики электрических моторов

1. Определение необходимой мощности.

Важно! Для определения мощности электромотора для лодки используется понятие «тяга», которое обозначает усилие, развиваемое мотором. Измеряется в фунтах – lbs.

Чтобы определить какой мощности электромотор, необходим для вашей конкретной лодки, можно воспользоваться графиком:

Для определения водоизмещения нужно суммировать вес лодки, двигателя, топлива, примерный вес пассажиров и снаряжения. Так, при ориентировочном водоизмещении в 1500 кг, понадобится мотор мощностью около 60 lbs.

Имеет ли смысл приобретать мотор большей мощности, чем требуется?

Так как увеличение скорости всего на 1 км/ч требует увеличения мощности мотора в 1.5 раза, что сразу влечёт за собой увеличение стоимости мотора, то, наверное, не имеет смысла переплачивать за такое незначительное повышение скорости лодки.

2. Выбор аккумулятора

Электромоторы рассчитаны на два режима питания: 12в и 24в. Аккумуляторы рассчитаны на 12в, поэтому для мотора на 24в, используются два аккумулятора, последовательно соединённых.

Существует два типа аккумуляторов для лодочных электромоторов: стартовые и тяговые.

  • Стартовые – в течение короткого времени выдают максимум значения электрического тока. Однако при глубокой разрядке, что и происходит за целый день использования, могут быстро выйти из строя.
  • Тяговые – наиболее подходят для лодочных электромоторов, они не боятся даже полной разрядки. К наиболее популярным аккумуляторам относятся: Varta, Exide, Deka.

Цена на тяговые аккумуляторы в несколько раз выше, чем на стартовые, но и срок их службы превышает срок службы стартовых в 5-10 раз. Если вы выходите на рыбалку достаточно часто, то имеет смысл приобрести тяговый аккумулятор.

Выбор ёмкости аккумуляторной батареи зависит от мощности выбранного мотора. Мотор большей мощности требует батареи с большей ёмкостью.

При максимальной скорости электромотор потребляет примерно 1А на каждый фунт мощности. Скажем для мотора мощностью 30 фунтов с ёмкостью аккумулятора 75 А/час, запас хода при максимальной скорости составит 2.5 часа (75:30=2.5).

На средней скорости, аккумулятора хватает максимум на два дня рыбалки. Если планируется большее количество дней, нужно предусмотреть возможность подзарядки.

Ориентировочные данные зависимости времени плавания и пройденного расстояния от скорости лодки при использовании электромотора мощностью 30 lbs c батареей ёмкостью 75 А/час.

 2.6 КМ/Ч3.2 КМ/Ч3.8 КМ/Ч4.4 КМ/Ч5.6 КМ/Ч
Время в пути час118652.5
Максимальное расстояние км2725.622.82214

В тяговых аккумуляторах глубокого разряда может использоваться гелевидный электролит. Такие аккумуляторы абсолютно герметичны, не требуют проверки уровня жидкости.

Гелевая субстанция препятствует разрушению пластин от воздействия вибрации, что обеспечивает батарее высокую прочность.

Спустя месяц после полной разрядки, они могут набрать 100% исходной мощности, время подзарядки уменьшается в 7 раз по сравнению с обычными аккумуляторами.

Современные гелевые аккумуляторы разработаны для использования в условиях, когда использование аналогов с жидким электролитом затруднено или невозможно.

Технические характеристики некоторых моделей тяговых аккумуляторов:

 СТОИМОСТЬ РУБЁМКОСТЬ A/ЧАСВЕС КГПУСКОВОЙ ТОК A
Crown (США) 12в69469522675
Crown (США) 12 в943911527845
DEKADP 24 серия MarineMaster (США)57508517.7550
DEKA DC31 DT серия Marine Master (США) 12 в895012026.8650
DEKA DOMINATOR 8G24 (США) гелевый 12в108507424.3400
DEKA DOMINATOR 8G31DT (США) гелевый 12в1400010032.5550

Определить разряжен ли ваш аккумулятор во время движения, можно с помощью вольтметра. Хотя для тяговых аккумуляторов имеются специальные приборы индикации заряда. Они могут быть как переносными, так и встраиваемыми в приборную панель.

Особенности электрических моторов

  • источник питания – аккумуляторы 12 в;
  • двигатели имеют возможность переднего и заднего хода и, как правило, 5 скоростей для движения вперёд и 3 скорости для движения назад;
  • простота в управлении и обслуживании;
  • ручное управление двигателя осуществляется с помощью рукоятки румпеля, который часто бывает телескопическим. С его помощью происходит управление направлением, скоростью движения и направлением вращения винта;
  • ножное управление осуществляется с помощью педали, которая даёт возможность точно и быстро изменять скорость и угол поворота лодки;
  • форма лопастей гребного винта помогает избежать наматывания на него травы или водорослей;
  • современные электромоторы оснащены системой регулировки погружения гребного винта в воду и регулировки наклона самого двигателя;
  • крепится на транцевую доску, на корму или нос лодки.

Правильная и безопасная эксплуатация электромоторов

Благодаря своей простой конструкции, лодочный электромотор отличается надёжностью и долговечностью. Для увеличения срока его эксплуатации следует соблюдать несколько несложных правил:

  • Скорости должны переключаться плавно, с интервалом 2-3 с. Переключение с 1 скорости сразу на 5, может привести к быстрой разрядке аккумулятора;
  • Регулярно менять щетки электродвигателя;
  • Оптимальный расход энергии аккумулятора поддерживается на 2-3 скоростях;
  • В случае поломки винта, его замена может быть осуществлена самостоятельно.

К производителям наиболее популярных, надёжных и функциональных электромоторов относятся JarvisWalker (Австралия) с моделями Water Snake и MinnKota(США) с моделями Endura:

 МОЩНОСТЬ LBSВЕС КГСКОРОСТИ ВПЕРЁД/НАЗАДИНДИКАТОР ЗАРЯДКИТЕЛЕСКОП.РУМПЕЛЬ/ НАКЛОН РУМПЕЛЯЦЕНА РУБ
Water Snake T182862/2нетнет4700
Water Snake FWT28449.55/2естьесть10098
Endura305.75/3естьесть8670
Endura50105/3естьесть22130

Выбор электромотора в качестве основного или дополнительного к основному бензиновому двигателю для надувной лодки, оправдан его отличными характеристиками, необходимыми для такого вида рыбалки как троллинг, а также возможностью использовать его в тех местах, где бензиновые двигатели запрещены.

5 причин для выбора подвесного электрического мотора для рыбалки

Электрический лодочный мотор – это будущее в развитиии подвесных двигателей, которые постепенно будут совершенствоваться и оптимизироваться, получая более высокую мощность, лучший функционал, комфорт управления и роботизированные, автоматические способности. Рассмотрим, какие существуют причины выбрать подвесной электромотор для рыбалки в настоящее время.

Подвесной лодочный электромотор не так давно считался исключительно троллинговым вариантом эксплуатации. Этот бесшумный движок для воды пользуется популярностью среди любителей удить рыбу в движении. Электромотор со слабой частотой вибрации и шума просто идеально подходит для этого рыболовного действа. Также электрический лодочный двигатель необходим для передвижения по заповедным водоемам и заказникам.

Конструкция

Подвесной лодочный электромотор состоит из следующих частей:

  • рабочей головы;
  • румпеля;
  • проводов для подключения питания;
  • ноги-опоры;
  • сцепной транцевой струбцины;
  • пропеллер;
  • киль-перо.

Установка

Подвесной лодочный мотор достаточно прост и легок в установке. Всё, что необходимо – это подвесить электродвигатель на струбцине и запитать провода к батарее. Непосредственно сам электрический лодочный мотор легок и компактен. Его можно переносить, чуть ли не в ручной клади. Но вот сама аккумуляторная батарея весит немало. Но, несомненно меньше и легче, чем бензиновый лодочный двигатель.

Многофункциональная струбцина оснащена возможностью наклонить и зафиксировать положение лодочного электромотора относительно судна.

Отличительная особенность электромотора – это выдвижная нога, которую можно вытянуть или компактно сложить согласно размерам транца. Необходимая высота ноги электродвигателя фиксируется с помощью специального затягивающего хомута.

ПОЛЕЗНО ЗНАТЬ! Выбирайте лодочный электромотор с длиной штанги не больше 760 мм. Слишком длинная нога мотора в движении будет издавать неприятную вибрацию, передающуюся на румпель.

Запуск

Проблем с зажиганием лодочного электромотора нет. Запуск осуществляется от пусковой кнопки. Управлять электромотором удобно и просто ухватом румпеля-рукояти. Электрическая установка подвижна вправо и влево. Лодка легко чувствует заданное направление, послушно отзывается на установленный курс движения.

Мощность

При выборе электрического лодочного мотора важно помнить, что чем больше мощность, тем выше будет нога двигателя, что также будет негативно сказываться на общем комфорте управления. Каким бы ни была мощь лодочного электромотора, лодка не сможет развить высокую скорость. Впрочем, для рек и озер, которые являются основным маршрутом отечественного водного передвижения, скорости, чуть больше 10 км/ч будет более чем достаточно. Ведь не каждый пассажир мечтает лететь под 40 км/ч лодочным носом кверху. Чаще всего, водная прогулка – это желание степенно, а главное бесшумно, передвигаться по водной глади, без необходимости работы веслами. И именно бесшумность и легкость движения являются главными качествами подвесного электромотора для лодки.

ВАЖНО ЗНАТЬ! Мощность лодочного электромотора измеряется в Lbs.

Аккумулятор

Силу и мощь лодочному электромотору обеспечивает аккумуляторная батарея.

При выборе аккумулятора для электрического лодочного мотора необходимо помнить несколько важных нюансов:

  1. АКБ должен быть тяговым, а не стартерным, как на авто.
  2. Тяговые АКБ способны долгое время разряжаться, сохранять постоянное напряжение и целостность пластины.
  3. Емкость АКБ имеет значимость на его вес. Соответственно, чем мощнее аккумулятор для электромотора, тем больше будет его вес.
  4. По технологии наполнения АКБ бывают свинцово-кислотными и гелевыми. Предпочтение лучше отдать последнему варианту.

Причины выбрать подвесной электромотор для рыбалки

Существуют 5 главных причин, чтобы выбрать подвесной электромотор для рыбалки:

  1. Экологичность. Самый важный и весомый аргумент в пользу электродвигателя.
  2. Компактность. Подвесной лодочный мотор легко переносить и перевозить как в авто, так и на дальние расстояния.
  3. Практичность. Электростартер удобен как для рыбалки и троллинга, так и для семейной прогулки, экскурсий.
  4. Хождение по мелководью. Электрический двигатель безопасно использовать для неглубоких озер и рек, мели, болотистых водоемов.
  5. Экономия топлива. Электрическое питание исключает необходимость заправки бензином.

Видео

Видеосюжет демонстрирует обзор подвесного лодочного электромотора.

 

 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *