Генератор как сделать из мотора: Как сделать генератор из двигателя стиральной машины своими руками

  • Home
  • Разное
  • Генератор как сделать из мотора: Как сделать генератор из двигателя стиральной машины своими руками

Содержание

Трехфазный (380 В) генератор своими руками: пошаговая инструкция

Трехфазный (380 В) генератор своими руками: пошаговая инструкция

Генератор для дома, дачи или мастерской необходим для получения альтернативного электричества.

Если питание должно поступать и к однофазным, и к трехфазным приборам (инструментам, станкам), то нужен генератор трехфазный. Он способен запитать разную по фазности технику, как на 220 Вольт, так и на 380 Вольт — вот, что значит трехфазный генератор. Таким образом, при отсутствии тока в стационарной сети, вы сможете включать и перфоратор или дрель на 220В и бетономешалку на 380В, но только не одновременно, а поочередно. Трехфазный генератор – необходимое приобретение как для домашнего пользования, так и для производственных площадок.

Самодельный генератор, возможно ли это

Хоть электростанция трехфазная — агрегат весьма сложный, его можно собрать самостоятельно, изучив принцип работы генератора и имея доступные элементы и детали.

Для этого используется асинхронный электрический двигатель.

Принцип работы основан на всем знакомой динамо-машине — заставить ротор вращаться принудительно. Как работает трехфазный генератор? На основе асинхронного двигателя. Для того, чтобы этот мотор, не включенный в сеть, заработал в роли источника электричества, нужно передать на его якорь вращательный момент. Крутящий момент возникает от любой механической энергии.

Лучший способ, как сделать трехфазный генератор — задействовать двигатель внутреннего сгорания. Причем, вы можете создать не только бензиновый генератор, а экономный газовый или мощный дизельный. Для подключения к двигателю используют амортизирующую муфту, чтобы ротор вращался не рывками, а плавно.

Даже больше — детально разобравшись, что такое трехфазный генератор, вы поймете, что механическую энергию можно получить не только от ДВС, а от совершенно бесплатных носителей. Это значит, что можно использовать энергию речки или ветра (если природные условия содействуют). В этом случае нужно собрать и установить турбину, ветряную или водяную. Получается отличная возможность сэкономить на оплате электроэнергии, получаемой от стационарной сети.

В некоторых населенных пунктах Украины для вращения ротора используют даже лошадей. Этот способ соорудить электрогенератор своими руками популярен среди определенных религиозных общин, которые принципиально не пользуются стационарным электричеством. Несколько запряженных коней вращают якорь, создавая нужную механическую энергию. Получается дешевая электроэнергия от живой конской силы.

Как работает генератор 380 Вольт собственного изготовления

При вращении ротора, в статоре возникает магнитное поле, формирующее ЭДС. Привод устроен так, что, если подсоединить к концам обмоток конденсатор, то по виткам начинает идти ток. Емкость конденсаторной батареи должна быть выше критического номинала, чтобы генератор был пригоден для активной нагрузки и выдавал симметричные трехфазные вольтажи.

Кроме этого показателя, на мощность электрогенератора влияет и двигатель, создающий крутящий момент, его конструкция и мощность.

Для продуцирования электричества 380 Вольт со стандартной частотой 50 Гц, скорость вращения якоря привода должна поддерживаться на определенном уровне. Магнитные силовые линии возникнут только при условии, что скорость выше асинхронной составляющей на коэффициент скольжения S (равен 2÷10 процентов) и соответствовать уровню синхронной частоты. В противном случае правильной синусоиды тока добиться невозможно, а ее искривление (скачки частоты) недопустимы, если подключаем к электростанции 380 Вольт приборы, оснащенные электрическими двигателями (дрели, перфораторы, болгарки, пилы). Если мотора нет, а только нагревательный ТЭН или лампа накаливания, то значение частоты и синусоида тока не настолько имеют значение.

Существует также вариант использования генераторов на 220 Вольт для оборотов электродвигателя. В этом случае, мы получаем самодельный трехфазный генератор из однофазного. Передача вращательного момента идет на якорь асинхронного трехфазного привода, в результате чего получается трехфазная сеть.

Какой асинхронный двигатель нужен: характеристики ротора и статора

Асинхронный трехфазный привод — основная база для генератора переменного тока. Очень часто такие моторы списываются на предприятиях, поэтому найти его можно за низкую цену или бесплатно. Обязательные условия выбора, какой у него ротор и статор:

  • Ротор у такого движка может быть фазный или короткозамкнутый;
  • Статор — с тремя отдельными медными обмотками. Соединение витков между собой допускается по типу «треугольник» или «звезда».

Устройство и принцип работы такого привода состоит в том, что ротор (якорь) — вращающийся элемент, статор — неподвижный. У них обоих основу составляют изолированные стальные пластины. На этих пластинах расположены пазы, в которых идут витки обмотки.

В статоре выходы витков нужно подсоединить в клеммную коробку и установить перемычки для соединения. Кабель для питания также устанавливают здесь.

К каждой фазе статора подсоединяются идентичные напряжения, смещенные на угол, который составляет примерно треть круга. Эти синхронные подводки отвечают за формирование тока в витках статора.

В роторе подключение зависит от особенностей его строения: фазный или короткозамкнутый.

  1. Фазный ротор. У такого ротора витки обмотки аналогичны, как у статора. Их выходы нужно смонтировать на кольца, которые проводят контакт и соприкасаются со схемой запуска и прижимными щетками. Конструкция получается непростая, с ней нужно повозиться. К тому же нужно постоянно наблюдать за частотой вращения и смотреть, не разомкнулись ли контактные кольца, не отошли ли прижимные щетки. Поэтому лучше выбрать ротор короткозамкнутого типа. Или же сделать короткозамкнутый якорь из фазного ротора. Для этого концы обмотки не подключают к кольцам, а сочетают между собой — коротят.
  2. Короткозамкнутый ротор. Как мы уже сказали, он более удобный для самостоятельного создания генератора, так как, в отличие от синхронного генератора, схема у него простая. Кольца-перемычки своими концами соединены и закорочены, подвижных прижимных щеток-контактов нет. Получается все очень просто и надежно, поэтому именно такой якорь и советуем выбирать для своей самоделки.

На что влияют схемы подключения

Схема трехфазного генератора в плане размещения обмоток на статоре мотора влияет на последующую работу устройства, определяет его технические характеристики.

  • Электросхема соединения «звезда». Это стандартный тип соединения витков и очень популярный. Он самый практичный при подключении конденсаторной батареи. Ее присоединение можно выполнить:
    • К двум обмоткам. В результате такой схемы асинхронные генераторы обеспечивают питание однофазным приборам (причем, двум группам) и трехфазным (одна линия). Клавиши выключателей для рабочего и пускового конденсатора — отдельные. 
    • К одной обмотке (по такой же схеме). Получим одну однофазную линию. И одну трехфазную.
  • Схема подключения «треугольник» применяется для переключения обмоток для получения однофазного питания.

На какие характеристики двигателя еще нужно обратить внимание

Для надежной и стабильной работы генератора, сделанного своими руками, важны определенные технические характеристики двигателя. Они указаны на наклейке или же в паспорте (если он есть). Важные моменты, это:

  • Класс защиты (обозначение IP). Чем меньше цифра — тем лучше корпус привода защищен о проникновения пыли и влаги.
  • Мощность.
  • Количество оборотов.
  • Схема сочетания витков обмотки статора.
  • Максимальные нагрузочные токи.
  • Коэффициент полезного действия.
  • Пусковой ток (коэффициент фи).

Все это следует выяснить, а если мотор старый и много лет использованный, то его нужно протестировать вольтметром, амперметром и «прозвонить» на предмет рабочего состояния.

Как просчитать мощность генератора

Чтобы работа самодельной электростанции была стабильной, нужно, чтобы ее номинальный вольтаж и мощность были одинаковыми в режимах генератора и электрического мотора. Перед тем, как выбрать конденсаторную батарею, нужно учесть:

  • Реактивную мощность Q. Она равняется 2n*f*C*U2, где С — емкость конденсатора. Отсюда, нужная нам емкость С будет равна Q/2n*f *U2.
  • Режим работы. Для того, чтобы в режиме холостого хода не возникала перегрузка обмоток и их перегрев, конденсаторные элементы подключают ступенчатым способом, в соответствии с нагрузкой.

Рекомендуемая нами марка пусковых конденсаторов — К78-17, с вольтажом 400 Вольт и выше. Допускаются и аналогичные по характеристикам металлобумажные элементы. Подключение их параллельное.

Батареи на электролите для переменного тока использовать не советуем. На них может работать генератор постоянного тока, а при переменном элементы электролитного конденсатора будут быстро выходить из строя.

Советы и рекомендации по соблюдению безопасности

Трехфазный вольтаж 380 Вольт — это большая опасность поражения человека и его смерти. Поэтому, безопасная эксплуатация самоделки — самое важное требование. Для ее гарантии необходимо выполнить такие условия:

  1. Управление единым электрощитом, в состав которого входят:
  • Измерительные приборы: вольтметр (с максимумом не ниже 500 Вольт), амперметр и частотомер.
  • Выключатели для взаимодействия нагрузок (три клавиши). Одна из них включает питание непосредственно к потребителю, а две других отвечают за подключение конденсаторных элементов.
  • Систему защиты — автовыключатель, который срабатывает при коротком замыкании или перегрузке по мощности. Сюда также входит и устройство защитного отключения, которое должно сработать, если фаза пробьет на корпус.
  • Надежное заземление к контуру земли. 
  • Система АВР. Для удобства работы и повышения безопасности, также советуем использовать автоматический ввод резерва. Он актуален, если вам нужно резервное питание в качестве генератора. Тогда он сможет самостоятельно включаться при исчезновении тока в стационарной сети, и так же автоматом отключаться при его появлении. АВР создают путем установки перекидного рубильника, который задействует все три фазы.
  • Советы по эксплуатации: какие трудности могут возникнуть

    Частым проблемным явлением работы генератора является перегрузка по мощности. При ней идет интенсивный нагрев обмотки, пробой изоляции. Как следствие — поломка генератора. Возникает из-за:

    • Неверного подбора емкости конденсаторной батареи;
    • Подсоединения большого количества электротехники, суммарная мощность которой превышает номинальную мощность. 

    О правилах подбора емкости и расчетах мы уже говорили выше. А по проблеме перегруза по мощности в генераторе на три фазы, нужно отметить еще некоторые нюансы при подключении однофазных потребителей:

    • Потребителей с вольтажом 220 Вольт можно подключать только на одну треть общей мощности (к примеру, если ген выдает 6 кВт, то это только для приборов на 380 Вольт, а для однофазных будет только 2 кВт, не больше). Иначе, возникнет перегрузка. 
    • Если у вашего генератора две однофазных линии, то вместе мощность по ним будет составлять 2/3 от общего показателя мощности. То есть, 6 кВт — это 4 кВт для однофазных, по 2 кВт на каждую фазу. Причем, при одновременном задействовании фаз, следите, чтоб нагрузка не отличалась от мощности до 10%, иначе возникнет явление «перекос фаз», и ток поступать не будет.

    При работе важно следить за показателем частоты переменного тока. Если вы не встроили частотомер на общий электрощит, то на холостом ходу выходной вольтаж выше значения 380 Вольт (или 220 при подключении однофазных) на 4÷6 процентов.

    Переделка автомобильного генератора в мощный электродвигатель


    Автомобильные генераторы, благодаря своей конструкции, имеют малые размеры и очень высокую мощность. Казалось бы, такая кроха может запросто выдать в среднем 2000 Вт мощности (бывают модели и до 5 кВт).
    Генератор не может работать как электродвигатель, если просто приложить к нему напряжение. Чтобы превратить его в малогабаритный, мощный мотор его необходимо доработать.

    Переделываем генератора в мощный электродвигатель


    В примере использовать модель на 95 Ампер. Снимаем пластиковый кожух с задней части генератора.

    Под этим кожухом располагаются трехфазный мост выпрямительных диодов закрепленный на радиаторе. И щеточный узел с контроллером регулировки выходного напряжения.

    Откручиваем радиатор с диодами. Возможно придется поработать кусачками, чтобы все можно было быстро удалить.

    В этой модели щетки и котроллер имеют один пластиковый корпус.

    Отпилим щетки от контроллера.

    Сам генератор построен по типу коллекторного двигателя. Имеет 6 выводом соответственно от трех обмоток на статоре.

    Чтобы включить обмотки «треугольником» нужно соединить их последовательно между собой.

    В итоге получился обыкновенный коллекторный, трехфазный двигатель 12 В и мощностью порядка 1,5 кВт.
    Для управления им можно использовать контроллер от велосипеда, который предназначен для управления мотор-колесом. Купить его можно на Али Экспресс — http://ali.pub/4aplqd
    Напряжение может быть любое, все они рассчитаны на напряжение не ниже 12 В. А вот мощность контроллера должна быть не ниже 1,5 кВт.

    Чтобы запустить генератор как двигатель, необходимо на его коллектор подать постоянное напряжение. Для этого устанавливаем на место щеточный узел и подаем на него постоянное напряжение 12 В.

    Ток, конечно большой, но его можно уменьшить в зависимости от требуемой мощности.

    Подключаем контроллер к двигателю и к аккумулятору 12 В.

    Ручкой управления регулируем обороты вала двигателя.
    Длаее такой мотор можно установить хоть на багги, хоть на велосипед. 1,5 кВт мощности хватит на все.

    Смотрите видео


    В видеоролике вы можете наглядно убедится о скорости и мощности багги, построенного на двигателе из автомобильного генератора.

    Асинхронный генератор своими руками: устройство, принцип работы, схемы

    Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

    Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:

    • более высокую степень надёжности;
    • длительный срок эксплуатации;
    • экономичность;
    • минимальные затраты на обслуживание.

    Эти и другие свойства асинхронных генераторов заложены в их конструкции.

    Устройство и принцип работы

    Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

    Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

    Рис. 1. Ротор и статор асинхронного генератора

    Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

    Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).

    Рис. 2. Асинхронный генератор в сборе

    Принцип действия

    По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

    В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

    При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

    Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

    На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.

    Рис. 3. Схема сварочного асинхронного генератора

    Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.

    Рисунок 4. Схема устройства с индуктивностями

    Отличие от синхронного генератора

    Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

    Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

    Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

    • ИБП;
    • регулируемые зарядные устройства;
    • современные телевизионные приёмники.

    Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

    Классификация

    Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

    На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.

    Рис. 5. Типы асинхронных генераторов

    Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

    Область применения

    Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

    Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.

    Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

    Сфера применения довольно обширная:

    • транспортная промышленность;
    • сельское хозяйство;
    • бытовая сфера;
    • медицинские учреждения;

    Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

    Асинхронный генератор своими руками

    Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):

    Рис. 6. Заготовка с наклеенными магнитами

    Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

    Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

    Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

    Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

    Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U2·C·10-6.

    При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

    Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1
    https://www.youtube.com/watch?v=ZQO5S9F72CQ

    Часть 2
    https://www.youtube.com/watch?v=nDCdADUZghs

    Часть 3
    https://www.youtube.com/watch?v=6M_w1b2xyM8

    Часть 4
    https://www.youtube.com/watch?v=CONHg7p-IYE

    Часть 5
    https://www.youtube.com/watch?v=z2YSqVh2vM8

    Часть 6
    https://www.youtube.com/watch?v=FNU83kOeSbA

    Для упрощения подбора конденсаторов воспользуйтесь таблицей:

    Таблица 1

    Мощность альтернатора (кВт-А) Ёмкость конденсатора (мкФ) на холостом ходу Ёмкость конденсатора (мкФ) при средней нагрузке Ёмкость конденсатора (мкФ) при полной нагрузке
    2 28 36 60
    3,5 45 56 100
    5 60 75 138

    На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

    Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.

    Рис. 7. Схема подключения конденсаторов

    Советы по эксплуатации

    Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

    Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

    При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

    Список использованной литературы

    • Кацман М.М. «Электрические машины»  2013
    • А.А. Усольцев «Электрические машины» 2013
    • Бартош А.И. «Электрика для любознательных» 2019

    Электродвигатель как генератор — ООО «СЗЭМО Электродвигатель»

    Всем известно, что работа электродвигателя – это преобразование электрической энергии в механическую. Удастся ли заставить его преобразовывать механическую энергию в электрическую, чтобы использовать электродвигатель как генератор? Благодаря действующему в электротехнике принципу обратимости это возможно. Но нужно четко знать принцип работы агрегата и создать условия, способствующие превращению.

    Законы, позволяющие использовать асинхронный электродвигатель как генератор

    В генераторе напряжение, обычно подаваемое с аккумулятора, возбуждает в обмотке якоря магнитное поле, вращение же обеспечивается любым физическим устройством. В электродвигателе возможность подачи напряжения на обмотку якоря не предусмотрена. Чтобы он не поглощал, а вырабатывал электроэнергию, магнитное поле необходимо создать искусственно.

    В асинхронном двигателе вращающееся магнитное поле ротора «отстает» от поля статора, обеспечивая процесс перехода электроэнергии в механическую энергию. Следовательно, чтобы запустить обратный процесс, нужно сделать так, чтобы поле статора вращалось медленнее поля ротора, либо чтобы оно вращалось в противоположную сторону.

    Способы переделки электродвигателя в генератор

    Есть два способа «регулировки» магнитного поля статора.

    Торможение реактивной нагрузкой

    Сделать это можно с помощью мощной конденсаторной батареи. Включите ее в цепь питания двигателя, который работает в обычном режиме. Заряд, накопленный в батарее, будет в противофазе с зарядом, создаваемым питающим напряжением, что приведет к замедлению последнего. После этого двигатель вместо поглощения тока начинает генерировать его, отдавая в сеть.

    Любой транспорт на электротяге работает именно благодаря этому эффекту – при «самостоятельном» движении под уклон механическая энергия не требуется, и конденсаторная батарея автоматически подключается к цепи питания. Вырабатываемая энергия подается в сеть, чтобы затем опять преобразоваться в механическую.

    Самовозбуждение электродвигателя

    Остаточное магнитное поле ротора может произвести ЭДС, достаточное для зарядки конденсатора. Вследствие этого возникает эффект самовозбуждения, что делает возможным переход двигателя в режим генерации электроэнергии. Непрерывность этого процесса обеспечивает конденсаторная батарея, подпитывающаяся от произведенного тока.

    Этот способ является более действенным, и именно он подходит, если вы хотите применить асинхронный электродвигатель как генератор.

    Что нужно знать, чтобы электродвигатель работал как генератор

    При переделке двигателя в генератор следует учитывать следующие технические детали:

    • Не пытайтесь использовать электролитические конденсаторы – они не пригодны для подключения в цепь. Вам нужны неполярные конденсаторные батареи.
    • В трехфазных машинах конденсаторы могут включаться по схеме «треугольник» или «звезда». В первом случае величина напряжения на выходе выше, а во втором генерация начинается на меньших оборотах ротора. Выбирайте оптимальный для достижения вашей цели вариант.
    • Однофазные асинхронные двигатели с короткозамкнутым ротором тоже могут генерировать электроэнергию. Запуск осуществляется с помощью фазосдвигающего конденсатора.

    Поскольку определить необходимую величину емкости конденсаторной батареи невозможно, остается подбирать ее по весу – он должен быть равен весу двигателя или слегка превышать его.

    Насколько эффективно использование электродвигателя в качестве генератора

    У использования электродвигателя как генератора есть свои «плюсы»:

    • Агрегат достаточно прост в обслуживании и экономичен, поскольку конденсатор получает энергию от остаточного поля ротора и от вырабатываемого тока.
    • Практически отсутствуют «побочные» траты энергии на магнитные поля или бесполезный нагрев.

    И «минусы»:

    • Преобразованный в генератор двигатель чувствителен к перепадам нагрузки.
    • Частота вырабатываемого тока часто нестабильна.
    • Такой генератор не может обеспечить промышленную частоту тока.

    Если в вашем случае преимущества перевешивают недостатки, то применение асинхронного генератора целесообразно.


    Самодельный генератор из асинхронного электродвигателя

    В стремлении получить автономные источники электроэнергии специалисты нашли способ как своими руками переделать, трехфазный асинхронный электродвигатель переменного тока в генератор. Такой метод имеет ряд преимуществ и отдельные недостатки.

    Внешний вид асинхронного электродвигателя

    В разрезе показаны основные элементы:

    1. чугунный корпус с радиаторными рёбрами для эффективного охлаждения;
    2. корпус короткозамкнутого ротора с линиями сдвига магнитного поля относительно его оси;
    3. коммутационно контактная группа в коробке (борно), для коммутации обмоток статора в схемы звезда или треугольник и подключения проводов электропитания;
    4. плотные жгуты медных проводов обмотки статора;
    5. стальной вал ротора с канавкой для фиксации шкива клиновидной шпонкой.

    Детальная разборка асинхронного электродвигателя с указанием всех деталей показана на рисунке ниже.

    Детальная разборка асинхронного двигателя

    Достоинства генераторов, переделанных из асинхронных двигателей:

    1. простота сборки схемы, возможность не разбирать электродвигатель, не перематывать обмотки;
    2. возможность вращения генератора электротока ветряной или гидротурбиной;
    3. генератор из асинхронного двигателя широко используется в системах мотор-генератор для преобразования однофазной сети 220В переменного тока в трёхфазную сеть с напряжением 380В.
    4. возможность использования генератора, в полевых условиях раскручивая его от двигателей внутреннего сгорания.

    Как недостаток можно отметить сложность расчёта ёмкости конденсаторов, подключаемых к обмоткам, фактически это делается экспериментальным путём.

    Поэтому трудно добиться максимальной мощности такого генератора, бывают сложности с электропитанием электроустановок, которые имеют большое значение пускового тока, на циркулярных электропилах с трёхфазными двигателями переменного тока, бетономешалках и других электроустановках.

    Принцип работы генератора

    В основу работы такого генератора заложен принцип обратимости: «любая электроустановка преобразующая электрическую энергию в механическую, может сделать обратный процесс». Используется принцип работы генераторов, вращение ротора вызывает ЭДС и появление электрического тока в обмотках статора.

    Исходя из этой теории, очевидно, что асинхронный электродвигатель можно переделать в электрогенератор. Чтобы осознано провести реконструкцию необходимо понять, как происходит процесс генерации и что для этого требуется. Все двигатели, которые приводит в движение сила переменного тока, считаются асинхронными. Поле статора движется с небольшим опережением относительно магнитного поля ротора, подтягивая его за собой в сторону вращения.

    Чтобы получить обратный процесс, генерацию, поле ротора должно опережать движение магнитного поля статора, в идеальном случае вращаться в противоположном направлении. Добиваются этого включением в сеть питания, конденсатора большой ёмкости, для увеличения ёмкости используют группы конденсаторов. Конденсаторная установка заряжается, накапливая магнитную энергию (элемент реактивной составляющей переменного тока). Заряд конденсатора по фазе противоположный источнику тока электродвигателя, поэтому вращение ротора начинает замедляться, обмотка статора генерирует ток.

    Этот принцип работы используется практически в электровозах, трамваях при необходимости плавного торможения. По такому же принципу некоторые «Кулибины», замедляют вращение диска электросчётчиков, пытаясь сократить расходы на электроэнергию.

    Преобразование

    Как практически своими руками преобразовать асинхронный электродвигатель в генератор?

    Для подключения конденсаторов надо открутить верхнюю крышку борно (коробка), где расположена контактная группа, коммутирующая контакты обмоток статора и подключены провода питания асинхронного двигателя.

    Открытое борно с контактной группой

    Обмотки статора могут быть соединены в схему «Звезда» или «Треугольник».

    Схемы включения «Звезда» и «Треугольник»

    На шильдике или в паспорте на изделие показаны возможные схемы подключения и параметры двигателя при различных подключениях. Указывается:

    • максимальные токи;
    • напряжение питания;
    • потребляемая мощность;
    • количество оборотов в минуту;
    • КПД и другие параметры.

    Параметры двигателя, которые указаны на шильдике

    В трёхфазный генератор из асинхронного электродвигателя, который делают своими руками, конденсаторы подключаются по аналогичной схеме «Треугольником» или «Звездой».

    Вариант включения со «Звездой» обеспечивает пусковой процесс генерации тока на более низких оборотах, чем при соединении схемы в «Треугольник». При этом напряжение на выходе генератора будет немного ниже. Подключение по схеме «Треугольника» предоставляет незначительное увеличение выходного напряжения, но требует более высоких оборотов при запуске генератора. В однофазном асинхронном электродвигателе подключается один фазосдвигающий конденсатор.

    Схема подключения конденсаторов на генераторе в «Треугольник»

    Используются конденсаторы модели КБГ-МН, или другие марки не менее 400 В бесполярные, двухполюсные электролитические модели в этом случае не подходят.

    Как выглядит бесполюсный конденсатор марки КБГ-МН

    Так как в бытовых условиях рассчитать необходимую ёмкость конденсаторов для используемого двигателя практически невозможно, экспериментальным путём была составлена таблица.

    Расчёт ёмкости конденсаторов для используемого двигателя

    Номинальная выходная мощность генератора, в кВтПредположительная ёмкость в, мкФ
    260
    3,5100
    5138
    7182
    10245
    15342

    В синхронных генераторах возбуждение процесса генерации происходит на обмотках якоря от источника тока. 90% асинхронных двигателей имеют короткозамкнутые роторы, без обмотки, возбуждение создаётся остаточным в роторе статическим зарядом. Его достаточно чтобы на первоначальном этапе вращения создать ЭДС, которое наводит ток, и подзаряжает конденсаторы, через обмотки статора. Дальнейшая подзарядка уже поступает от генерируемого тока, процесс генерации будет непрерывным, пока вращается ротор.

    Автомат подключения нагрузки к генератору, розетки и конденсаторы рекомендуется установить в отдельный закрытый щит. Соединительные провода от борно генератора до щита проложить в отдельном изолированном кабеле.

    Даже при неработающем генераторе необходимо избегать прикосновения к клемам конденсаторов контактов розеток. Накопленный конденсатором заряд остаётся длительное время и может ударить током. Заземляйте корпуса всех агрегатов, мотора, генератора, щита управления.

    Монтаж системы мотор-генератор

    При монтаже генератора с мотором своими руками надо учитывать, что указанное количество номинальных оборотов используемого асинхронного электродвигателя на холостом ходу больше.

    Схема мотор-генератора на ременной передаче

    На двигателе в 900 об/м при холостом ходе будет 1230 об/м, чтобы получить на выходе генератора, переделанного из этого двигателя достаточную мощность, надо иметь количество оборотов на 10% больше холостого хода:

    1230 + 10% =1353 об/м.

    Ременная передача рассчитывается по формуле:

    Vг = Vм x Dм\Dг

    Vг – необходимая скорость вращения генератора 1353 об/м;

    Vм – скорость вращения мотора 1200 об/м;

    Dм – диаметр шкива на моторе 15 см;

    Dг – диаметр шкива на генераторе.

    Имея мотор на 1200 об/м где шкив Ø 15 см, остаётся рассчитать только Dг – диаметр шкива на генераторе.

    Dг = Vм x Dм/ Vг = 1200об/м х 15см/1353об/м = 13,3 см.

    Генератор на ниодимовых магнитах

    Как сделать генератор из асинхронного электродвигателя?

    Этот самодельный генератор исключает применение конденсаторных установок. Источник магнитного поля, которое наводит ЭДС и создаёт ток в обмотке статора, построен на постоянных ниодимовых магнитах. Для того чтобы это сделать своими руками необходимо последовательно выполнить следующие действия:

    • Снять переднюю и заднюю крышки асинхронного электродвигателя.
    • Извлечь ротор из статора.

    Как выглядит ротор асинхронного двигателя

    • Ротор протачивается, снимается верхний слой на 2 мм больше толщины магнитов. В бытовых условиях сделать расточку ротора своими руками не всегда представляется возможным, при отсутствии токарного оборудования и навыков. Нужно обратиться к специалистам в токарные мастерские.
    • На листе обычной бумаги готовится шаблон для размещения круглых магнитов, Ø 10-20мм, толщиной до 10 мм, с силой притяжения 5-9 кг, на кв/см, размер зависит от величины ротора. Шаблон наклеивается на поверхность ротора, магниты размещаются полосами под углом 15 – 20 градусов относительно оси ротора, по 8 штук в полосе. На рисунке ниже видно, что на некоторых роторах отмечены тёмно-светлые полосы смещения линий магнитного поля относительно его оси.

    Установка магнитов на ротор

    • Ротор на магнитах рассчитывается так, чтобы получилось четыре группы полос, в группе по 5 полосок, расстояние между группами 2Ø магнита. Промежутки в группе 0.5-1Ø магнита, такое расположение снижает силу залипания ротора к статору, он должен проворачиваться усилиями двух пальцев;
    • Ротор на магнитах, сделанный по рассчитанному шаблону, заливается эпоксидной смолой. После того как она немного подсохнет цилиндрическая часть ротора покрывается слоем стекловолокна и опять пропитывается эпоксидной смолой. Это исключит вылет магнитов при вращении ротора. Верхний слой на магнитах не должен превышать первоначального диаметра ротора, который был до проточки. В противном случае ротор не встанет на своё место или при вращении будет тереться об обмотку статора.
    • После просушки, ротор можно поставить на место и закрыть крышки;
    • Испытывать, электрогенератор необходимо – проворачивать ротор электродрелью, измеряя напряжение на выходе. Количество оборотов при достижении нужного напряжения измеряется тахометром.
    • Зная необходимое количество оборотов генератора, ременная передача рассчитывается по методике описанной выше.

    Интересный вариант применения, когда электрогенератор на основе асинхронного электродвигателя, используется в схеме электрический мотор-генератор с самоподпиткой. Когда часть мощности вырабатываемой генератором поступает на электродвигатель, который его раскручивает. Остальная энергия расходуется на полезную нагрузку. Осуществив принцип самоподпитки практически можно на долгое время обеспечить дом автономным электропитанием.

    Видео. Генератор из асинхронного двигателя.

    Для широкого круга потребителей электроэнергии покупать мощные дизельные электростанции как TEKSAN TJ 303 DW5C с мощностью на выходе 303 кВА или 242 кВт не имеет смысла. Маломощные бензиновые генераторы дорогие, оптимальный вариант сделать своими руками ветровые генераторы или устройство мотор-генератор с самопдпиткой.

    Используя эту информацию можно собрать генератор своими руками, на постоянных магнитах или конденсаторах. Такое оборудование очень полезно на загородных домах, в полевых условиях, как аварийный источник питания, когда отсутствует напряжение в промышленных сетях. Полноценный дом с кондиционерами, электрическими плитами и нагревательными бойлерами, мощный мотор циркулярной пилы они не потянут. Временно обеспечить электроэнергией бытовые приборы первой необходимости могут, освещение, холодильник, телевизор и другие, которые не требуют больших мощностей.

    Оцените статью:

    Самодельный генератор. Все способы своими руками

    Способ 1

    В Интернете нашел статью о том, как переделать генератор автомобиля на генератор с постоянными магнитами. Можно ли использовать этот принцип и переделать генератор своими руками из асинхронного электродвигателя? Возможно, что будут большие потери энергии, не такое расположение катушек.

    Двигатель асинхронного типа у меня на напряжение 110 вольт, обороты – 1450, 2,2 ампера, однофазный. При помощи емкостей я не берусь делать самодельный генератор, так как будут большие потери.

    Предлагается пользоваться простыми двигателями по такой схеме.

    Если изменять двигатель или генератор с магнитами округлой формы от динамиков, то надо их устанавливать в крабы? Крабы – это две металлические детали, стоят на якоре снаружи катушек возбуждения.

    Если магниты надевать на вал, то вал будет шунтировать магнитные силовые линии. Как тогда будет возбуждение? Катушка тоже расположена на валу из металла.

    Если поменять подсоединение обмоток и сделать параллельное соединение, разогнать до оборотов выше нормальных значений, то получается 70 вольт. Где взять механизм для таких оборотов? Если перематывать его на уменьшение оборотов и ниже питание, то слишком упадет мощность.

    Двигатель асинхронного типа с замкнутым ротором – это железо, которое залито алюминием. Можно взять самодельный генератор от автомобиля, у которого напряжение 14 вольт, сила тока 80 ампер. Это неплохие данные. Двигатель с коллектором на переменный ток от пылесоса или стиральной машины можно применить для генератора. На статор установить подмагничивание, напряжение постоянного тока снимать со щеток. По наибольшему ЭДС поменять угол щеток. Коэффициент полезного действия стремится к нулю. Но, лучше, чем генератор синхронного типа, не изобрели.

    Решил испытать самодельный генератор. Однофазный асинхронный мотор от стиралки малютки крутил дрелью. Подключил к нему емкость 4 мкФ, получилось 5 вольт 30 герц и ток 1,5 миллиампера на короткое замыкание.

    Не каждый электромотор можно использовать в качестве генератора таким методом. Есть моторы со стальным ротором, имеющие малую степень намагниченности на остатке.

    Необходимо знать разницу между преобразованием электрической энергии и генерацией энергии. Преобразовать 1 фазу в 3 можно несколькими способами. Один из них – это механическая энергия. Если электростанцию отсоединить от розетки, то пропадает все преобразование.

    Откуда возьмется движение провода с повышением скорости, ясно. Откуда магнитное поле будет для получения ЭДС в проводе – не понятно.

    Объяснить это просто. Из-за механизма магнетизма, который остался, образуется ЭДС в якоре. Возникает ток в статорной обмотке, который замкнут на емкости.

    Ток возник, значит, дает усиление на электродвижущую силу на катушках роторного вала. Появившийся ток дает усиление электродвижущей силы. Электроток статорный образует электродвижущую силу намного больше. Это идет до установления равновесия статорных магнитных потоков и ротора, а также дополнительные потери.

    Размер конденсаторов рассчитывают так, что на выводах напряжение достигает номинального значения. Если оно маленькое, то снижают емкость, то повышают. Были сомнения по поводу старых моторов, которые якобы не возбуждаются. После разгона ротора мотора или генератора надо ткнуть быстро в любую фазу малым количеством вольт. Все придет в нормальное состояние. Зарядить конденсатор до напряжения равному половину емкости. Включение производить выключателем с тремя полюсами. Это относится с 3-фазному мотору. Такая схема используется для генераторов вагонов пассажирского транспорта, так как у них ротор короткозамкнутый.

    Способ 2

    Самодельный генератор сделать можно и по-другому. Статор имеет хитрую конструкцию (имеет специальное конструкторское решение), имеется возможность регулировки напряжения выхода. Я сделал генератор своими руками такого вида на строительстве. Двигатель брал мощностью 7 кВт на 900 оборотов. Обмотку возбуждения я подключил по схеме треугольника на 220 В. Запустил его на 1600 оборотов, конденсаторы были на 3 на 120 мкФ. Включались они контактором с тремя полюсами. Генератор действовал как выпрямитель с тремя фазами. С этого выпрямителя питалась электрическая дрель с коллектором на 1000 ватт, и пила дисковая на 2200 ватт, 220 В, болгарка 2000 ватт.

    Приходилось изготавливать систему мягкого пуска, другой резистор с закороченной фазой через 3 секунды.

    Для моторов с коллекторами это неправильно. Если в два раза повысить вращающую частоту, то уменьшится и емкость.

    Также повысится и частота. Схема емкостей отключалась в автоматическом режиме, чтобы не использовать тор реактивности, не расходовать горючее.

    Во время работы надо нажать на статор контактора. Три фазы разобрал их по ненужности. Причина кроется в высоком зазоре и увеличенном рассеивании поля полюсов.

    Специальные механизмы с двойной клеткой для белки и косыми глазами для белки. Все-таки я получил с моторчика стиралки 100 вольт и частоту 30 герц, лампа на 15 ватт не хочет гореть. Очень слабая мощность. Надо мотор брать сильнее, или конденсаторов больше ставить.

    Под вагонами используется генератор с ротором короткозамкнутым. Его механизм приходит от редуктора и на ременную передачу. Обороты вращения 300 оборотов. Он находится как дополнительный генератор нагрузки.

    Способ 3

    Можно сконструировать самодельный генератор, электростанцию на бензине.

    Вместо генератора использовать 3-фазный асинхронный мотор на 1,5 кВт на 900 оборотов. Электродвигатель итальянский, подключаться может треугольником и звездой. Сначала я поставил мотор на основание с мотором постоянного тока, присоединил к муфте. Стал крутить двигатель на 1100 оборотов. Появилось напряжение 250 вольт на фазах. Подключил лампочку на 1000 ватт, напряжение сразу упало до 150 вольт. Наверное, это от фазного перекоса. На каждую фазу надо включать отдельную нагрузку. Три лампочки по 300 ватт не смогут снизить напряжение до 200 вольт, теоретически. Можно конденсатор поставить больше.

    Обороты двигателя надо делать больше, при нагрузке не снижать, тогда питание сети будет постоянным.

    Необходима значительная мощность, автогенератор такую мощность не даст. Если перемотать большой камазовский, то с него не выйдет 220 В, так как магнитопровод будет перенасыщен. Он был сконструирован на 24 вольта.

    Сегодня собирался пробовать подсоединить нагрузку через 3-фазный блок питания (выпрямитель). В гаражах свет отключили, не получилось. В городе энергетиков систематически отключают свет, поэтому надо делать источник постоянного питания электричеством. Для электросварки есть навеска, подцепляется к трактору. Для подключения электрического инструмента нужен постоянный источник напряжения на 220 В. Была мысль сконструировать самодельный генератор своими руками, и инвертор к нему, но, на аккумуляторных батареях не долго можно проработать.

    Недавно включили электричество. Подключал двигатель асинхронный из Италии. Поставил его с мотором бензопилы на раму, скрутил вместе валы, поставил муфту резиновую. Катушки соединил по схеме звезды, конденсаторы треугольником, по 15 мкФ. Когда запустил моторы, то на выходе питания не получилось. Присоединял конденсатор, заряженный к фазам, напряжение появилось. Свою мощность в 1,5 кВт двигатель выдал. При этом питающее напряжение снизилось до 240 вольт, на холостых оборотах было 255 вольт. Шлифмашинка от него нормально работала на 950 ватт.

    Пробовал повысить обороты двигателя, но не получается возбуждение. После контакта конденсатора с фазой напряжение возникает сразу. Буду пробовать ставить другой двигатель.

    Какие конструкции систем за границей производятся для электростанций? На 1-фазных понятно, что ротор владеет обмоткой, перекоса фаз нет, потому что одна фаза. В 3-фазных имеется система, которая дает регулировку мощности при подсоединении к ней моторов с наибольшей нагрузкой. Еще можно подсоединить инвертор для сварки.

    В выходные хотел сделать самодельный генератор своими руками с подключением асинхронного двигателя. Удачной попыткой сделать самодельный генератор оказалось подключение старого двигателя с корпусом из чугуна на 1 кВт и на 950 оборотов. Мотор возбуждается нормально, с одной емкостью на 40 мкФ. А я установил три емкости и подключил их звездой. Этого хватило для запуска электродрели, болгарки. Хотел, чтобы получилась выдача напряжения на одной фазе. Для этого подключал три диода, полумост. Сгорели лампы люминесцентные для освещения, и подгорели пакетники в гараже. Буду наматывать трансформатор на три фазы.

    Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

    Похожее

    Генератор из асинхронного двигателя — схема, как сделать своими руками?

    Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.

    Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.

    Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.

    Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.

    Схема генератора из асинхронного двигателя

    схема генератора на базе асинхронного двигателя

    В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:

    1. Обмотка возбуждения, которая находится на специальном якоре.
    2. Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.

    Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:

    1. Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
    2. Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
    3. Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
    4. Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.

    При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.

    Устройство генератора

    Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:

    1. Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
    2. Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
    3. Контактные кольца имеют надежный крепеж к валу ротора.
    4. В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
    5. Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
    6. Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.

    Изготовление генератора из двигателя

    Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.

    Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:

    1. Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре. Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
    2. Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
    3. Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
    4. Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
    5. Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
    6. Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
    7. После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
    8. Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
    9. Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
    10. Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
    11. Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
    12. Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Такж,е потребуется контроллер для зарядки, подходят фактически все современные модели.

    После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.

    Оценка уровня эффективности – выгодно ли это?

    Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?

    Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.

    Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.

    Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.

    Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.

    Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:

    1. В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
    2. Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
    3. При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.

    Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.

    Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.

    Функционирование асинхронного двигателя как генератора

    В соответствии с принципами, по которым функционируют все подобные машины, работа асинхронного двигателя после преобразования в генератор происходит следующим образом:

    1. После подключения конденсаторов к зажимам, на обмотке статоров происходит ряд процессов. В частности, в обмотке начинается движение опережающего тока, который создает эффект намагничивания.
    2. Только при соответствии конденсаторов параметрам необходимой емкости, происходит самовозбуждение устройства. Это способствует возникновению симметричной системы напряжения с 3 фазами на статорной обмотке.
    3. Значение итогового напряжения будет зависеть от технических возможностей используемой машины, а также от возможностей используемых конденсаторов.

    Благодаря описанным действиям происходит процесс преобразования асинхронного двигателя короткозамкнутого типа в генератор с подобными характеристиками.

    Применение

    В быту и на производстве такие генераторы широко применяются в различных сферах и областях, но наиболее востребованы они для выполнения следующих функций:

    1. Использование в качестве двигателей для ветряных электростанций, это одна из наиболее популярных функций. Многие люди самостоятельно изготавливают асинхронные генераторы для задействования их в этих целях.
    2. Работа в качестве ГЭС с небольшой выработкой.
    3. Обеспечение питанием и электроэнергией городской квартиры, частного загородного дома или отдельного бытового оборудования.
    4. Выполнение основных функций сварочного генератора.
    5. Бесперебойное оснащение переменным током отдельных потребителей.

    Советы по изготовлению и эксплуатации

    Необходимо обладать определенными навыками и знаниями не только по изготовлению, но и по эксплуатации подобных машин, помочь в этом могут следующие советы:

    1. Любая разновидность асинхронных генераторов вне зависимости от сферы, в которой они применяются, является опасным устройством, по этой причине рекомендуется провести его изоляцию.
    2. В процессе изготовления устройства необходимо продумать монтаж измерительных приборов, поскольку потребуется получение данных о его функционировании и рабочих параметрах.
    3. Наличие специальных кнопок, с помощью которых можно управлять устройством, в значительной степени облегчает процесс эксплуатации.
    4. Заземление является обязательным требованием, которое необходимо реализовать до момента эксплуатации генератора.
    5. Во время работы, КПД асинхронного устройства может периодически снижаться на 30-50%, побороть возникновение этой проблемы не представляется возможным, поскольку этот процесс является неотъемлемой частью преобразования энергии.

    Статья была полезна?

    0,00 (оценок: 0)

    Электродвигатель, используемый в качестве генератора

    В = -N (dΦ / dt)

    Электричество и магнетизм

    Электродвигатель, используемый в качестве генератора

    Практическая деятельность для 14-16

    Демонстрация

    Вы можете генерировать переменный ток с помощью двигателя с дробной мощностью.

    Аппаратура и материалы

    Техника безопасности и здоровья

    Для удобства двигатель должен быть установлен на плате, как показано, с гнездами 4 мм для подключения к обмоткам ротора и статора.

    Прочтите наше стандартное руководство по охране труда

    Процедура

    1. Подсоединить обмотки якоря (ротора) к демонстрационному счетчику.
    2. Подключить обмотки возбуждения (статора) к низковольтному источнику питания.
    3. Установите напряжение питания 2 В постоянного тока. и включите
    4. Поверните якорь, вращая шкив на валу рукой.
    5. Измените направление вращения, чтобы увидеть разницу.
    6. Повторить без подачи напряжения на полевые клеммы.

    Учебные заметки

    • Только маленькие динамо-машины имеют постоянные магниты для создания магнитного поля; у больших есть электромагниты (катушки которых обычно получают немного от собственного выходного тока динамо-машины).
    • Очень большой перем. генераторы на электростанциях называются генераторами переменного тока. В них совокупность катушек возбуждения вращается, приводимая в движение турбиной, и называется ротором. Катушки якоря, в которых генерируется выходное напряжение, удерживаются в раме вне ротора и остаются неподвижными; это статор.
    • Эта конструкция удобна для больших машин, поскольку не требует щеток, коммутатора или контактных колец для передачи большого выходного тока. Электромагниты вращающегося ротора питаются небольшим постоянным током, в котором они нуждаются, от небольшого d.c. динамо на том же вращающемся валу, что и большой генератор.
    • Динамо-машина, вращающаяся с постоянной скоростью с полевым магнитом, поддерживающим постоянную силу, создает постоянную разность потенциалов (ЭДС), как батарея элементов с хорошим поведением. Даже при отсутствии выходного тока динамо-машина все равно вырабатывает э.д.с. Готов водить ток. Когда вы позволяете ему управлять током, подключая что-либо к его выходным клеммам, величина тока зависит от сопротивления устройства, которое вы подключаете (и внутреннего сопротивления динамо-катушек).

    Этот эксперимент прошел испытания на безопасность в апреле 2006 г.

    • Видео, демонстрирующее аналогичный эксперимент с электромагнитной индукцией:

    Создайте самодельную систему генератора переменного / постоянного тока высокой мощности

    Эта запись была опубликована 23 сентября 1999 года на сайте TheEpicenter.com.

    СИСТЕМА Компоненты для самодельной системы генератора переменного / постоянного тока

    • Двигатель, работающий на газе (или пропане)
    • Муфта вала прямого привода
    • Головка генератора переменного тока, 3600 об / мин
    • Генератор GM, 12 или 24 В
    • Промышленный клиновой ремень
    • Шкив (аналогично показанному)
    • Кронштейн генератора горизонтальный (собственный Эпицентр!)

    SUBSYSTEM Компоненты для самодельной системы генератора переменного / постоянного тока

    Основные компоненты в подсекции переменного тока

    Проект может остановиться здесь, если DC не требуется *

    Компоненты, увеличивающие возможность зарядки постоянным током

    Установите генератор на двигатель!

    Добавьте этот кронштейн — упрощает! Добавьте кабели для финального штриха.

    * Обратите внимание: TheEpicenter.com не продает головки для генераторов переменного тока.

    Генератор вопросов

    Q: Так зачем мне создавать собственный генератор, если я могу просто купить его, готовый к работе?

    A: Чертовски хороший вопрос!

    Во многих случаях лучше просто выложить деньги и купить качественный генератор переменного тока, такой как эта модель Generac, но в других случаях действительно невозможно получить все, что вы хотите, не сделав это самостоятельно. Это если вам нужно много зарядки постоянным током, а также синусоидальный переменный ток.

    С другой стороны, создание идеальной системы может стоить не так дорого, как вы думаете, если у вас уже есть один из ключевых компонентов.

    Вы можете быть одним из тех мастеров, у которых может быть запасной двигатель, и вы могли бы использовать его для привода головки генератора без необходимости покупать дорогую специализированную систему генератора переменного тока. В некоторых случаях может быть дешевле купить головку генератора и повторно использовать двигатель от чего-то еще, в чем вы больше не нуждаетесь или нуждаетесь только в течение нескольких месяцев в году.

    Хорошим примером может быть человек, у которого сидит мойка высокого давления с большим двигателем, возможно, качественным и дорогим, как Хонда. В этом случае вы можете снять насос в сборе со своей стиральной машины и прикрепить генераторную головку, когда это необходимо зимой, а весной вы можете снять генераторную головку и снова прикрепить блок насоса мойки высокого давления.

    Лучше было бы построить многоцелевую систему выработки электроэнергии, потому что в настоящее время ее нельзя купить.В этом приложении вам может потребоваться зарядить батарею, например, одновременно с наличием некоторого источника переменного тока. В этом приложении один и тот же двигатель может напрямую приводить в действие головку генератора, одновременно приводя в движение генератор переменного тока для зарядки постоянным током.

    В общем, когда кто-то хочет зарядить батарею, часто бывает доступна избыточная мощность, которую можно использовать для одновременной работы головки генератора переменного тока. Или, с другой стороны, вам может потребоваться питание переменного тока для ремонта дома с помощью электроинструментов, или вам может потребоваться включить микроволновую печь, холодильник или что-то еще, и вы хотите одновременно зарядить свои батареи.

    Здесь слева показан прототип проекта, над которым я экспериментирую для собственного использования.

    Головка генератора переменного тока напрямую соединена с двигателем Tecumseh 8 HP и имеет 12-вольтовый генератор переменного тока с ременным приводом, установленный на нашем горизонтальном кронштейне генератора, который прикреплен к двигателю. Чтобы получить полную номинальную выходную мощность в 6000 Вт пиковой мощности от головки генератора, этот конкретный двигатель не имеет достаточной мощности. Чтобы развить полную номинальную выходную мощность этой головки, двигатель действительно должен быть моделью 10 л.с., такой как HM100, или, еще лучше, моделью 11 л.с. для немного большего запаса прочности.Конечно, использование генератора переменного тока исключительно на этом двигателе является примером чрезмерной эксплуатации, но сочетание более низкой выходной мощности переменного тока при наличии постоянного тока обеспечивает довольно эффективное использование топлива и ресурсов.

    В моем приложении мне не требуется более 2500 Вт переменного тока, для чего обычно требуется двигатель мощностью около 5 л.с. Оставшиеся 3 лошадиные силы могут быть выделены на подсистему зарядки постоянного тока с помощью подключенного генератора переменного тока.

    Вот еще один вид, на котором вы можете увидеть компоненты прямого и ременного привода.

    Давайте посмотрим, что действительно требуется для того, чтобы эта головка генератора вырабатывала переменный ток для определенных уровней выходного тока.

    Для полной мощности производитель указывает двигатель мощностью 11 л.с., но могут использоваться и другие двигатели, если вы не нарушаете общие правила, изложенные ниже. Попытка потребить больше мощности, чем показано ниже, с использованием мощности двигателя ниже номинальной, приведет к тому, что генератор будет вырабатывать напряжение переменного тока ниже указанного на выходе. В некоторых случаях это может привести к потере энергии, что может привести к электрическому повреждению устройств, на которые подается питание.Следует принять особые меры предосторожности, чтобы гарантировать, что приведенные ниже номинальные значения мощности в лошадиных силах и выходная мощность или уровни не нарушаются.

    Выход генератора переменного тока Требуемый объем двигателя (например, для целей)
    6000 Вт пиковая, 5000 Вт непрерывная
    (выход переменного тока с полной номинальной мощностью, без постоянного тока)
    11 Мощность
    5000 Вт пиковая, 4000 Вт непрерывная 8 Мощность в лошадиных силах
    3000 Вт пиковая, 2500 Вт непрерывная 5 Мощность в лошадиных силах

    Итак, если вы используете двигатель мощностью 8 л.с. с этой головкой генератора переменного тока и можете гарантировать, что никогда не будете использовать мощность переменного тока, превышающую, скажем, 2500 Вт, тогда остается достаточно мощности, чтобы иметь возможность приводить в действие ремень на 12 вольт. генератор, работающий, скажем, на 40 ампер (14.4 вольт x 40 ампер = 576 ватт) с небольшим пространством для головы, когда ремень приводится в движение с того же вала.

    Хотя производитель специально заявляет, что для развития полной номинальной мощности требуется мощность двигателя, эквивалентная одиннадцати лошадиным силам, меньшие версии этой генераторной головки производят более низкие продолжительные характеристики, указанные в таблице, и требуют меньшей мощности. Мы экстраполировали данные, представленные в спецификациях для меньших головок генератора, и, хотя большая пиковая головка 6000 Вт имеет большую массу в роторе, мы реалистично ожидаем, что для вращения ротора не требуется такой большой дополнительной мощности, особенно с учетом герметичности шариковые подшипники используются на обоих концах головки.

    Я предполагаю, что я пытаюсь сказать, что если вы можете гарантировать, что никогда не будете пытаться вытащить слишком много переменного тока из головки генератора, то даже небольшой двигатель не заглохнет, и у вас будет дополнительная мощность, доступная для других целей. как запуск генератора переменного тока, как показано в прототипе.

    Итак, давайте обсудим некоторые вопросы
    Типичные газовые двигатели оценивают свою мощность в лошадиных силах при 3600 об / мин.

    Если двигатель используется на скоростях ниже этого номинального значения, двигатель не развивает полный номинальный выходной крутящий момент и мощность в лошадиных силах.

    Однако работа двигателя на более низких оборотах увеличивает топливную экономичность и снижает износ, поэтому всегда есть компромиссы.

    Следует также отметить, что выходной вал этих небольших двигателей вращается против часовой стрелки, если смотреть со стороны выходного вала двигателя. Это то, что придет снова!

    Поскольку большинство двигателей рассчитано на 3600 об / мин, вы заметите, что многие головки генератора также рассчитаны на вращение со скоростью 3600 об / мин.

    Если вы попытаетесь запустить головку генератора переменного тока со скоростью ниже номинальной 3600 об / мин, в этом случае выходное напряжение переменного тока не будет составлять 120 вольт, а будет более низким.Некоторое оборудование, которое вы собираетесь использовать, может быть более снисходительным к более низкому напряжению, какое-то оборудование может быть повреждено, поэтому очень важно, чтобы вы вращали генератор с правильной частотой вращения.
    Более подробное обсуждение настройки числа оборотов двигателя и головки генератора можно найти в следующем разделе.

    Также следует отметить, что вал головки генератора должен вращаться по часовой стрелке, если смотреть со стороны вала головки генератора. Итак, расположите валы лицом друг к другу и угадайте, что? И двигатель, и головка генератора вращаются в правильном направлении.Это позволяет напрямую приводить в действие головку генератора с помощью муфты вала.

    Теперь поговорим о подключении двигателя к генераторной головке

    Вопрос: Как вы напрямую приводите в действие головку генератора с двигателем?
    A: Узел муфты вала прямого привода.

    Для соединения выходного вала двигателя с входным валом головки генератора (или чем-либо еще) требуется специальная муфта вала. В основном нужно три штуки.

    Выберите половину муфты, размер которой соответствует валу двигателя (или размеру ведущего вала), затем выберите половину муфты, которая имеет правильный размер для головки генератора (или размер ведомого вала).

    Затем две соединительные муфты соединяются с помощью так называемой крестовины.

    Обратите внимание, что каждая муфта вала имеет по 3 пальца, а крестовина имеет 6 пазов. Три пальца со стороны двигателя входят в три паза крестовины, а три пальца со стороны соединителя генератора входят в другие три паза на крестовине. Этот узел муфты допускает перекос между двумя валами на несколько степеней и защищает подшипники от боковых нагрузок, которые могут возникнуть в результате перекоса.

    Эти соединители доступны в нескольких размерах. На сайте TheEpicenter.com доступны несколько размеров.

    Q: Когда вы строите свой собственный генератор переменного тока, используя газовый двигатель и головку генератора переменного тока, как вы настраиваете комбинацию, чтобы система вырабатывала правильное выходное напряжение и вращала головку генератора с правильной скоростью?
    A: Можно использовать два подхода:

    Измерьте напряжение переменного тока для регулировки оборотов двигателя.

    Этот вольтметр переменного тока подключается непосредственно к любой розетке переменного тока и отображает измеренное напряжение без необходимости использования портативного цифрового вольтметра и пробников для подключения к розетке переменного тока.Глюкометр имеет встроенную вилку переменного тока на задней стороне.

    Напряжения в стандартном диапазоне от 115 до 125 вольт выделены зеленым цветом, что указывает на допустимые параметры напряжения. Напряжения, выходящие за пределы этих диапазонов, обозначены красным цветом. Этот измеритель обеспечивает легко читаемую индикацию выходного напряжения генератора.
    Измеряйте обороты двигателя с помощью индуктивного тахометра, а также знайте, когда менять масло!
    Это устройство позволяет контролировать и настраивать частоту вращения двигателя таким образом, чтобы он вращался с указанной частотой вращения, необходимой для головки генератора.Это счетчик оборотов (оборотов в минуту) или тахометр. Он индуктивно подключается к проводу свечи зажигания и определяет скорость зажигания свечи зажигания в течение заданного периода времени. Результат измерения отображается в оборотах в минуту. Затем можно регулировать частоту вращения двигателя до тех пор, пока не будет достигнута указанная частота вращения головки генератора. Если частота вращения регулируется в соответствии со спецификацией производителя для головки генератора, номинальная выходная мощность генератора будет составлять 120/240 вольт в зависимости от конструкции и технических характеристик головки генератора переменного тока.

    Показанное устройство также ведет текущий общий объем использования двигателя и отображает количество часов и минут, в течение которых двигатель проработал. Пока двигатель производит искру, отображается частота вращения. После остановки двигателя отображается общее время работы двигателя в часах и минутах. Следует отметить, что счетчик моточасов не может быть сброшен. Однако отображаемое кумулятивное время работы чрезвычайно полезно при принятии решения о том, когда вам нужно выполнять регулярное обслуживание, например, замену масла.

    Двигатели, которые не вращаются со скоростью 3600 об / мин

    В: Что делать, если у меня двигатель не вращается со скоростью 3600 об / мин? Можно ли как-нибудь использовать такую ​​головку генератора?
    A: Да! Но это немного сложнее.
    Конфигурация ременного привода

    В этой генераторной головке установлены двойные шарикоподшипники, позволяющие использовать ременную передачу.

    В этой конфигурации подшипники генератора испытывают высокую боковую нагрузку, и не все головки генератора построены с необходимыми подшипниками, чтобы выдерживать эту боковую нагрузку.Однако используемая нами головка генератора предназначена для выполнения этой работы.

    Вот как вы могли бы определить, какой размер шкива использовать:
    Ratio of RPM = Соотношение размера шкива

    Более подробно:
    Обороты двигателя / Обороты генератора = Размер шкива генератора / Размер шкива двигателя.

    Итак, зная, что генератор должен вращаться со скоростью 3600 об / мин, определите, с какой скоростью двигатель должен работать. Это соотношение будет определять соотношение требуемых шкивов.

    Скажем, например, что это дизельный двигатель, который должен работать со скоростью 1800 об / мин для достижения полного номинального крутящего момента.Затем подставьте значения в уравнение, и вы получите:

    1800 об / мин / 3600 об / мин = 1/2 = размер шкива генератора / размер шкива двигателя.

    Итак, какой бы размер шкива ни был выбран для генератора, размер шкива двигателя должен быть в 2 раза больше.

    Выбор размера шкива также осложняется тем фактом, что не все шкивы доступны для всех диаметров вала. И внешний диаметр шкива не всегда является эффективным диаметром при использовании ремня одного типа в отличие от ремня другого типа.Поскольку ремни разных стилей перемещаются выше или ниже в канавке шкива, эффективный диаметр шкива может измениться, если используется другой тип ремня, но эффект наблюдается на обоих шкивах, поэтому соотношение размеров шкива все еще применимо для большинство приложений.

    Если вы не можете определить пару шкивов, которые являются стандартными, доступными и дают вам точное соотношение, тогда есть три варианта:
    1. Вы можете использовать так называемый шкив с переменным шагом, то есть шкив, позволяющий регулировать ширину канавки.Они очень специализированные и немного дорогие. Поскольку ремень имеет фиксированную ширину, регулировка ширины шкива «переменного шага» заставляет ремень перемещаться выше или ниже в канавке, таким образом эффективно регулируя «диаметр шага» шкива. Я упоминаю об этом только из академических соображений (чтобы какая-то умная задница меня не победила), потому что другие варианты ниже проще.

    2. Используйте пару, которая дает наименьшую погрешность передаточного числа, а затем отрегулируйте дроссельную заслонку двигателя для компенсации.Этот метод не может быть выполнен простым использованием тахометра без выполнения некоторых вычислений для корректировки показаний tac. Лучшим выбором было бы использовать вольтметр и регулировать дроссельную заслонку до тех пор, пока на выходе генератора не будет достигнуто 120 вольт.

    3. Вы можете использовать промежуточный вал и комбинацию двух передаточных чисел шкивов. Эта опция необходима только в ЭКСТРЕМАЛЬНЫХ случаях, когда соотношение таково, что никакие комбинации не подходят близко, или у вас нет доступа к шкивам, которые подходят к одному из ваших валов.Я не собираюсь подробно обсуждать это, поскольку это становится немного сложнее, но ниже приведен пример использования промежуточного вала.

    Мы составили приведенную ниже таблицу, чтобы помочь вам найти размеры шкивов, которые считаются стандартными в отрасли. У нас нет в наличии все эти размеры, но мы можем специально заказать один для вас, если вы не можете найти на месте тот, который соответствует вашим потребностям. Ячейки, отмеченные знаком «X», указывают на то, что шкив доступен с комбинацией вала и диаметра. Пустые ячейки (или черные в зависимости от вашего браузера) указывают на то, что шкив обычно не доступен в этой комбинации размера и диаметра вала.

    Обратите внимание, что «размер шкива», показанный ниже, является внешним диаметром. Фактический диаметр шага зависит от того, какой ремень используется. Например, если используется ремень типа «А», они спускаются в канавке, так что вы можете вычесть 0,25 дюйма из показанного размера.

    Размер шкива Размер вала
    1/2 дюйма 5/8 дюйма 3/4 дюйма 7/8 дюйма 1 дюйм
    1.75 Х Х
    2,00 Х Х Х
    2,20 Х Х Х
    2,50 Х Х Х Х
    2,80 Х Х Х Х
    3.05 Х Х
    3,45 Х Х Х Х
    3,75 Х Х Х Х Х
    3,95 Х Х Х Х Х
    4,25 Х
    4.45 Х Х Х Х Х
    4,75 Х
    4,95 Х Х Х Х Х
    5,25 Х
    5,45 Х Х Х Х Х
    5.75 Х
    5,93 Х Х Х Х
    6,25 Х
    6,93 Х Х Х Х
    7,93 Х Х Х Х
    8.93 Х Х Х Х
    9,93 Х Х Х
    10,93 Х Х Х
    11,93 Х Х
    13,25 Х
    14.16 Х Х
    Вот практический пример использования промежуточного вала и двойного шкива

    В показанном примере я пытался преобразовать асинхронный двигатель в генератор (это то, что описано в буклете «Секреты генератора переменного тока»). Двигатель слева — это силовой двигатель с одним хрипом, который вращается со скоростью 3450 об / мин при питании от 120 В переменного тока, а двигатель справа — асинхронный двигатель, который обычно работает со скоростью 1725 об / мин.

    В целях тестирования я хотел использовать двигатель слева, чтобы вращать двигатель справа с правильной скоростью, чтобы я мог проверить преобразование асинхронного двигателя и проверить выходное напряжение. Однако у двигателя справа был очень маленький шкив, который замерз на валу, и его было невозможно удалить. Мой первоначальный план состоял в том, чтобы снять шкив и установить многоступенчатый шкив на оба двигателя, чтобы я мог добиться редукции от ведущего двигателя 3450 об / мин через один ремень до двигателя 1725 об / мин.Для этого потребуется шкив в два раза меньше на более быстром двигателе, чем размер шкива на более медленном двигателе. Как я уже сказал, мне не удалось снять шкив с мотора справа.

    Итак, что я в итоге сделал, так это прогнал двигатель справа через промежуточный вал, на котором был установлен многоступенчатый шкив. Два шкива были одинакового размера, поэтому скорость на промежуточном валу была точно такой же, как и скорость двигателя с правой стороны. Затем я поместил многоступенчатый шкив на двигатель, который обычно вращается со скоростью 3450 об / мин (левый двигатель), и ремень привел его к канавке шкива на промежуточном валу, который был вдвое больше.Таким образом, на каждый оборот двигателя слева промежуточный вал будет вращаться на 1/2 оборота, что приведет к тому, что редуктор от левого двигателя к правому двигателю будет ровно наполовину. Таким образом, когда двигатель слева вращается со скоростью 3450 об / мин, двигатель справа будет вращаться со скоростью 1725 об / мин.

    Давайте представим, что я изначально мог установить шкив правильного размера на оба двигателя. И давайте представим, что двигатель слева — это газовый двигатель, а двигатель справа — это головка генератора.Тогда ситуацию лучше всего проиллюстрировать уравнением:

    Передаточное число оборотов = передаточное число шкива

    Более подробно: Обороты двигателя / Обороты генератора = Размер шкива генератора / Размер шкива двигателя.

    Зная, что мне нужно, чтобы двигатель работал со скоростью 3450 об / мин, а генератор — со скоростью 1725 об / мин, тогда … 3450 об / мин / 1725 об / мин = 2

    Тогда скажем, у меня есть 2-дюймовый шкив, который подходит к стороне двигателя, это означает, что сторона генератора должна быть вдвое больше, или 4 дюйма.

    Давайте возьмем другой ременной привод, например

    Вот старая головка генератора переменного тока Onan. Этот зверь должен вращаться со скоростью 1800 об / мин, чтобы обеспечить переменный ток 120/240 вольт. Номинальная мощность большинства небольших бензиновых двигателей указана при 3600 об / мин. Зная, что частота вращения двигателя должна быть 3600, чтобы развивать полную мощность, а также зная, что головка генератора Onan должна вращаться на 1800 об / мин, становится очевидным, что мы не можем просто управлять этим конкретным генератором напрямую с бензиновым двигателем.Требуется некоторая форма снижения скорости.

    Для этого приложения применяется та же формула, которая показана ниже:

    Обороты двигателя / Обороты генератора = Размер шкива генератора / Размер шкива двигателя.

    Зная, что нам нужно, чтобы двигатель работал со скоростью 3600 об / мин, а генератор — со скоростью 1800 об / мин, тогда … 3600 об / мин / 1800 об / мин = 2

    Поскольку у меня уже был 3-дюймовый шкив для двигателя, мне нужно было определить размер шкива, который будет правильным, или вал генератора.Опять же, из приведенного выше уравнения:

    2 = Размер шкива генератора / 3 дюйма

    Итак, размер шкива генератора должен быть 6 дюймов.

    Подключение

    Преимущество использования головки генератора переменного тока в этом проекте заключается в том, что разъемы переменного тока предварительно подключены к разъемам на задней части головы. Есть два разъема, один на 120 вольт и один на 220 вольт, каждый из которых имеет две розетки.

    • Один дуплекс на 120 В (две розетки) Розетка 20 А, 5-20R
    • Один дуплекс на 240 В (две розетки) Розетка 15 А, 6-15R

    Секция постоянного тока может быть подключена несколькими способами в зависимости от того, какой тип генератора переменного тока выбран.

    Схема подключения зависит от того, какой генератор вы выберете. Показаны все три типа генераторов.

    Не подключайте генератор переменного тока, если вы не уверены, какой тип вы используете. Если вы ошиблись при выборе генератора или электрической схемы, вы очень рискуете повредить аккумулятор, электронные устройства или, что еще хуже, нанести травму! Для получения дополнительной информации проконсультируйтесь со специалистом по запчастям!

    Эта статья предназначена только для образовательных целей.Нет никаких гарантий, явных или подразумеваемых относительно точности представленной здесь информации! Проконсультируйтесь со специалистом по автомобильной проводке, прежде чем пытаться выполнять какие-либо электромонтажные работы.

    И последнее примечание: Если вы используете генератор переменного тока, для которого требуется внешний переключатель, вам необходимо выключить переключатель перед попыткой запуска генератора. Когда двигатель заработает, переключатель можно установить в положение «включено».

    Специальные детали, которые используются во многих наших советах, связанных с электроэнергией, доступны здесь, в TheEpicenter.ком!

    Как работают генераторы и динамо-машины

    Как работают генераторы и динамо-машины — объясните это Реклама

    Криса Вудфорда. Последнее изменение: 10 августа 2020 г.

    Нефть может быть любимым топливом в мире, но ненадолго. В современных домах в основном используется электричество. и скоро большинство из нас тоже станет водить электромобили. Электричество очень удобно.Вы можете производить его самыми разными способами, используя все, от угля и нефти до ветра и волн. Вы можете сделать это в в одном месте и используйте его на другом конце света, если хотите. И, как только вы его изготовите, вы можете хранить его в батареях и использовать это дни, недели, месяцы или даже годы спустя. Что делает электрический возможная мощность — и действительно практичная — это превосходный электромагнитный устройство, называемое электрогенератором: разновидность электродвигателя. работа в обратном направлении, которая преобразует обычную энергию в электричество.Давайте подробнее рассмотрим генераторы и узнаем, как они работают!

    Фото: Дизельный электрогенератор середины 20 века, сделанный в музее электростанции REA недалеко от Хэмптона, штат Айова. Любезно предоставлены фотографиями в Кэрол М. Хайсмит Архив, Библиотека Конгресса, Отдел эстампов и фотографий.

    Откуда берется электричество?

    Лучший способ понять электричество — начать с того, что его собственное название: электрическая энергия. Если вы хотите запустить что-нибудь электрические, от тостера или зубную щетку MP3-плеер или телевидение, вам необходимо обеспечить его постоянным запасом электроэнергии.Откуда ты это возьмешь? Есть основной закон физики называется сохранение энергии, которое объясняет, как можно получить энергия — и как вы не можете. Согласно этому закону существует фиксированный количество энергии во Вселенной и некоторые хорошие новости и некоторые плохие новости о том, что мы можем с этим сделать. Плохая новость в том, что мы не можем создавать больше энергии, чем у нас уже есть; хорошая новость в том, что мы не можем уничтожить любую энергию. Все, что мы можем сделать с энергией, это преобразовать из одной формы в другую.

    Фото: Большой электрогенератор, приводимый в движение паром, на геотермальной электростанции «Кожа» компании CalEnergy в округе Империал, Калифорния.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

    Если вы хотите найти электричество для питания своего телевизора, вы не будет производить энергию из воздуха: сохранение энергии говорит нам, что это невозможно. Вы будете использовать энергию преобразуется из какой-либо другой формы в необходимую вам электрическую энергию. Обычно это происходит на электростанции. на некотором расстоянии от вашего дома. Подключите телевизор к розетке, и электрическая энергия течет в него кабель.Кабель намного длиннее, чем вы думаете: на самом деле он проходит от вашего телевизора — под землей или по воздуху — до электростанция, на которой для вас подготавливается электроэнергия из богатое энергией топливо, такое как уголь, нефть, газ или атомное топливо. В этих экологически чистые времена, часть вашей электроэнергии также будет поступать из ветряные турбины, гидроэлектростанции (которые вырабатывают энергию, используя энергию плотин рек) или геотермальную энергию (внутренняя высокая температура). Откуда бы ни пришла ваша энергия, она почти наверняка будет превратился в электричество с помощью генератора.Только солнечные элементы и топливные элементы производить электричество без использования генераторов.

    Рекламные ссылки

    Как мы можем производить электричество?

    Фото: Типичный электрогенератор. Он может производить до 225 кВт электроэнергии и используется для испытаний прототипов ветряных турбин. Фото Ли Фингерша любезно предоставлено Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

    Если вы читали нашу подробную статью о электродвигатели, вы уже довольно много знают, как работают генераторы: генератор — это просто электродвигатель, работающий в обратном направлении.Если ты не прочтите эту статью, вы можете быстро взглянуть, прежде чем читать на — но вот краткое изложение в любом случае.

    Электродвигатель — это, по сути, просто плотный моток медной проволоки, намотанный железный сердечник, который свободно вращается с высокой скоростью внутри мощного постоянного магнита. Когда вы подаете электричество в медную катушку, она становится временный магнит с электрическим приводом — другими словами, электромагнит — и создает вокруг себя магнитное поле. Этот временное магнитное поле противодействует магнитному полю, которое постоянный магнит создает и заставляет катушку вращаться.Немного продуманная конструкция, катушка может непрерывно вращаться в в том же направлении, вращаясь по кругу и питая что угодно из электрическая зубная щетка к электричке.

    Фотография: Вращающаяся часть (ротор) типичного небольшого электродвигателя. Электрогенератор имеет точно такие же компоненты, но работает противоположным образом, превращая движение в электрическую энергию.

    Так чем же генератор отличается? Предположим, у вас есть электрический зубная щетка с аккумулятором внутри.Вместо того, чтобы позволить батарее питать двигатель, который толкает щетку, что, если бы вы сделали противоположный? Что, если вы несколько раз поворачиваете щетку вперед и назад? То, что вы делали бы, было бы вручную крутить электродвигатель. ось вокруг. Это заставит медную катушку внутри двигателя повернуться постоянно внутри его постоянного магнита. Если вы переместите электрический провод внутри магнитного поля, вы заставляете течь электричество через провод — по сути, вы производите электричество. Так что держи поворачивая зубную щетку достаточно долго, и теоретически вы получите электричества достаточно для подзарядки аккумулятора.По сути, вот как генератор работает. (На самом деле, это немного сложнее, чем это и вы не можете зарядить зубную щетку таким образом, хотя добро пожаловать!)

    Как работает генератор?

    Изображение: такой простой генератор вырабатывает переменный ток (электрический ток, который периодически меняет направление на противоположное). Каждая сторона генератора (зеленая или оранжевая) движется вверх или вниз. Когда он движется вверх, он будет генерировать односторонний ток; когда он движется вниз, ток течет в другую сторону.Если вы измеритель, подключенный к проводу, вы не знаете, в какую сторону движется провод: все, что вы видите, — это то, что направление тока периодически меняется на противоположное: вы видите переменный ток.

    Возьмите кусок провода и подключите его к амперметру (то, что измеряет ток) и поместите его между полюсами магнита. Теперь резко проведите проволокой сквозь невидимое магнитное поле, создаваемое магнитом, и через провод на короткое время протекает ток (регистрируемый на измерителе). Это фундаментальная наука, лежащая в основе электрогенератора, продемонстрированная в 1831 году британским ученым Майклом Фарадеем. (прочитать краткая биография или длинная биография).Если вы переместите провод в противоположном направлении, вы создадите ток, который течет в обратном направлении. (Если вам интересно, вы можете выяснить направление, в котором течет ток, используя то, что называется правило правой руки или правило генератора, которое является зеркальным отображением правила левой руки, используемого для определения того, как работают двигатели.)

    Важно отметить, что вы генерируете ток только тогда, когда вы перемещаете провод через магнитное поле (или когда вы перемещаете магнит мимо провода, что равносильно тому же).Недостаточно просто поднести провод к магниту: для выработки электричества провод должен пройти мимо магнита или наоборот. Предположим, вы хотите производить много электроэнергии. Поднимать и опускать провод в течение всего дня не будет особенным удовольствием, поэтому вам нужно придумать способ, как провести провод мимо магнита, установив тот или иной из них на колесо. Затем, когда вы поворачиваете колесо, проволока и магнит перемещаются друг относительно друга, и возникает электрический ток.

    А теперь самое интересное.Предположим, вы сгибаете проволоку в петлю, помещаете ее между полюсами магнита и размещаете так, чтобы она постоянно вращалась, как на схеме. Вероятно, вы увидите, что при повороте петли каждая сторона провода (оранжевая или зеленая) иногда будет двигаться вверх, а иногда — вниз. Когда он движется вверх, электричество будет течь в одну сторону; когда он движется вниз, ток будет течь в другую сторону. Таким образом, базовый генератор, подобный этому, будет производить электрический ток, который меняет направление каждый раз, когда петля провода переворачивается (другими словами, переменный ток или переменный ток).Однако большинство простых генераторов на самом деле вырабатывают постоянный ток — так как же им управлять?

    Генераторы постоянного тока

    Так же, как простой электродвигатель постоянного тока использует электричество постоянного тока (DC) для создания непрерывного вращательного движения, так и простой генератор постоянного тока производит стабильную подачу электричества постоянного тока, когда он вращается. Как двигатель постоянного тока, Генератор постоянного тока использует коммутатор. Звучит технически, но это всего лишь металлическое кольцо с трещинами в нем, которое периодически меняет местами электрические контакты катушки генератора, одновременно меняя направление тока.Как мы видели выше, простая проволочная петля автоматически меняет направление тока, которое он производит каждые пол-оборота, просто потому, что он вращается, а задача коммутатора — нейтрализовать эффект вращения катушки, обеспечивая создание постоянного тока.

    Иллюстрация: Сравнение простейшего генератора постоянного тока с простейшим генератором переменного тока. В этой конструкции катушка (серая) вращается между полюсами постоянного магнита. Каждый раз, когда он поворачивается на пол-оборота, ток, который он генерирует, меняется на противоположный.В генераторе постоянного тока (вверху) коммутатор меняет направление тока каждый раз, когда катушка перемещается на пол-оборота, отменяя реверсирование тока. В генераторе переменного тока (внизу) нет коммутатора, поэтому выходная мощность просто поднимается, опускается и меняет направление вращения при вращении катушки. Вы можете увидеть выходной ток от каждого типа генератора на диаграмме справа.

    Генераторы переменного тока

    Что, если вы хотите генерировать переменный ток (AC) вместо постоянного тока? Тогда вам понадобится генератор, который представляет собой просто генератор переменного тока.Самый простой вид генератора переменного тока похож на генератор постоянного тока без коммутатора. Когда катушка или магниты вращаются мимо друг друга, ток естественным образом растет, падает и меняет направление, давая на выходе переменный ток. Так же, как есть Асинхронные двигатели переменного тока, в которых для создания вращающегося магнитного поля используются электромагниты, а не постоянные магниты, поэтому существуют генераторы, которые работают за счет индукции аналогичным образом.

    Генераторы в основном используются для выработки электроэнергии от двигателей транспортных средств. В автомобилях используются генераторы, приводимые в движение их бензиновые двигатели, которые заряжают свои аккумуляторов во время движения (переменный ток преобразуется в постоянный диоды или выпрямительные схемы).

    Генераторы в реальном мире

    Фото: Генератор переменного тока — это генератор, вырабатывающий переменный ток (переменный ток) вместо постоянного (постоянного). Здесь мы видим механика, снимающего генератор с двигателя подвесной моторной лодки. Фото Есении Росас любезно предоставлено ВМС США.

    Производство электричества звучит просто — и это так. Сложность в том, что нужно приложить огромное количество физических усилий. для выработки даже небольшого количества энергии. Вы поймете это, если у вас есть велосипед с динамо-машиной. фары, работающие от колес: вам нужно немного крутить педали, чтобы фары светились — и это просто для производства крошечного количества электричества, необходимого для питания пара лампочек.Динамо — это просто очень маленькое электричество генератор. Напротив, на реальных электростанциях гигантские генераторы электричества приводятся в действие паровыми турбинами. Это немного похоже на вращающиеся пропеллеры или ветряные мельницы, приводимые в движение паром. Пар производится путем кипячения воды с использованием энергии, выделяемой при сжигании угля, масло или другое топливо. (Обратите внимание, как применяется сохранение энергии здесь тоже. Энергия, питающая генератор, поступает от турбина. Энергия, питающая турбину, поступает от топлива.И топливо — уголь или нефть — изначально поступало с заводов, работающих на энергия Солнца. Суть проста: энергия всегда должна исходить от где-то.)

    Сколько мощности вырабатывает генератор?

    Генераторы указаны в ваттах (измерение мощности, указывающее, сколько энергии производится каждую секунду). Как и следовало ожидать, чем больше генератор, тем большую мощность он производит. Вот приблизительное руководство от самого маленького до самого большого:

    Тип Мощность (Вт)
    Велосипед динамо 3
    Генератор USB с ручным приводом 20
    Ветряная микро турбина 500
    Малый дизельный генератор 5000 (5 кВт)
    Ветряная турбина 2 000 000 (2 МВт)

    Переносные генераторы

    Фото: Переносной электрогенератор, работающий от дизель.Фото Брайана Рида Кастильо любезно предоставлено ВМС США.

    В большинстве случаев мы принимаем электричество как должное. Мы включаем фонари, телевизоры или стиральные машины, не переставая думать, что электрическая энергия, которую мы используем, должна откуда-то поступать. Но что, если вы работаете на улице, в глуши, и нет источник электроэнергии, который вы можете использовать для питания вашей бензопилы или вашего электродрель?

    Одна из возможностей — использовать аккумуляторные инструменты с перезаряжаемые батарейки. Другой вариант — использовать пневматические инструменты, такие как отбойные молотки.Они полностью механические и питаются от сжатый воздух вместо электричества. Третий вариант — использовать портативный электрогенератор. Это просто небольшой бензиновый двигатель (бензиновый двигатель), похожий на компактный двигатель мотоцикла, с прилагается электрогенератор. Когда двигатель пыхтит, дожигая бензин, он толкает поршень взад и вперед, поворачивая генератор и вырабатывающий на выходе постоянный электрический ток. С с помощью трансформатора вы можете использовать такой генератор для производите практически любое необходимое напряжение в любом месте, где оно вам нужно.В виде пока у вас достаточно бензина, вы можете производить собственное электричество поставка на неопределенный срок. Но помните о сохранении энергии: кончится газа, и у вас кончится электричество!

    Artwork: Генераторные технологии быстро развивались в 19 веке. Английский химик и физик Майкл Фарадей построил первый примитивный генератор в 1831 году. В течение нескольких десятилетий многочисленные изобретатели создавали практические электрические генераторы. Эта («динамо-электрическая машина») была разработана Эдвардом Уэстоном в 1870-х годах как способ «преобразовывать механическую энергию в электрическую с большей эффективностью, чем прежде.«Он имеет статическое внешнее кольцо из магнитов (синий) и вращающийся якорь (катушки) в центре (красный). Коммутатор (зеленый) преобразует генерируемый ток в постоянный. Из патента США 180 082, переиздание 8141 Эдварда Уэстона, любезно предоставлено Управлением по патентам и товарным знакам США.

    Рекламные ссылки

    Узнать больше

    На этом сайте

    Вам могут понравиться эти другие статьи на нашем сайте по смежным темам:

    Видео

    • Демонстрация электрического генератора ?: Превосходное короткое видео доктора Джонатана Хара и Vega Science Trust очень ясно показывает, как перемещение катушки через магнитное поле может производить электричество.
    • Простой генератор: электрический генератор для научной выставки: Уильям Бити дает пошаговое руководство по созданию простого генератора с использованием простых для поиска компонентов (эмалированный провод, магниты, картон и т. Д.).
    • Велогенератор: Как привести в действие кухонный комбайн с помощью велосипеда, приводящего в действие генератор переменного тока (разновидность электрогенератора). Довольно изящный эксперимент, хотя комментарий мог бы быть немного яснее.

    Книги

    Для читателей постарше
    Для младших читателей

    Статьи

    Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

    статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

    Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

    Подписывайтесь на нас

    Сохранить или поделиться этой страницей

    Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

    Цитируйте эту страницу

    Вудфорд, Крис.(2009/2020) Генераторы. Получено с https://www.explainthatstuff.com/generators.html. [Доступ (укажите дату здесь)]

    Больше на нашем сайте …

    Из

    автомобильных генераторов получаются отличные электродвигатели; Вот как

    Скромный автомобильный генератор скрывает интересный секрет. Известные как часть, которая преобразует энергию внутреннего сгорания в электричество, необходимое для работы всего остального, они также сами могут использоваться в качестве электродвигателя.

    Схема простого автомобильного генератора переменного тока из патента США 3329841A, поданного в 1963 году для Robert Bosch GmbH.

    Эти устройства почти всегда представляют собой трехфазный генератор переменного тока с магнитной составляющей, питаемой от электромагнита на роторе, и поставляются с блоком выпрямителя и регулятора для преобразования более высокого переменного напряжения в 12 В для электрических систем автомобиля. Внутри они имеют три соединения с катушками статора, которые, как представляется, универсально соединены треугольником, и пару соединений с набором щеток, питающих катушки ротора через набор контактных колец.Они обладают удивительно высокой мощностью, и, по оценкам, их возможности в качестве двигателей оцениваются в несколько лошадиных сил. Лучше всего, что они легко доступны из вторых рук и к тому же удивительно дешевы, Ford Focus, показанный здесь, был получен от автомата eBay и стоил всего 15 фунтов стерлингов (около 20 долларов США).

    Мы уже слышим, как вы кричите «Почему ?!» на своем волшебном интернет-устройстве, пока вы это читаете. Давайте перейдем к этому.

    Эти люди думают, что создание собственных электромобилей — это весело!

    Одна из интересных сторон наблюдения за тем, как серия UK Hacky Racer вырастает из группы друзей, создающих глупые электромобили, до чего-то, приближающегося к официальной гоночной серии, — это наблюдение за эволюцией искусства создания Hacky Racer.Как немного более грязный кузен серии US Power Racing, он в некоторой степени извлек выгоду из унаследованного ими эволюционного опыта, но это не остановило Hacky Racers придумывать собственные разработки автомобилей. Они перешли от утилизированной мобильности и моторов для гольф-багги к китайским электродвигателям для электровелосипедов и трехколесных мотоциклов, и теперь более смелые конструкторы начинают искать движущую силу еще дальше. Одним из многообещающих источников недорогого двигателя с приличной мощностью является автомобильный генератор переменного тока.

    Наш генератор переменного тока Ford Focus

    При поиске переоборудованных автомобильных генераторов можно найти множество страниц, HOWTO и руководств, многие из которых могут быть чрезвычайно запутанными и сложными. В частности, есть предложения относительно трех соединений статора, с советами разорвать отдельные обмотки и применить к ним особые конфигурации проводки. Судя по опыту преобразования большого количества генераторов переменного тока, это кажется удивительным, поскольку все преобразованные нами модели имели одинаковую готовую к работе дельта-конфигурацию, которая вообще не нуждалась в замене проводки.Возможно, пришло время представить руководство Hackaday с настоящим генератором переменного тока и развенчать все оставшиеся мифы, пока мы работаем над этим.

    Итак, воодушевленные перспективой дешевого бесщеточного двигателя в проходе выше, перед вами на стенде стоит генератор переменного тока Ford Focus. Как его преобразовать?

    Бессмысленное уничтожение невинной машины Часть

    Снятие узла регулятора и щетки

    На задней панели современного генератора всегда есть пластиковая пылезащитная крышка, которая крепится набором болтов.Эти устройства предназначены для ремонта, поэтому (возможно, что удивительно для современных автомобильных компонентов) их обычно очень легко демонтировать. Если вы снимете пылезащитный чехол, вы увидите регулятор, выпрямители и щетки, иногда объединенные в единый блок, но чаще, как в случае с генератором Focus с регулятором и щетками как отдельный узел с выпрямителем.

    Часто бывает большое количество силиконового герметика, который необходимо срезать, но все гайки или болты, фиксирующие регулятор, должны быть откручены, и осторожно, чтобы не повредить сами щетки, их можно снять целиком. .Затем выпрямительный блок может быть удален — процесс, при котором иногда проще атаковать его боковыми ножами, чем пытаться удалить его целиком.

    Задняя панель генератора со снятыми регулятором и выпрямителем, на которой показаны соединения обмотки статора.

    Вы должны уметь идентифицировать три пучка толстых эмалированных медных проводов, идущих от катушек статора, и отсоединить от них ремни выпрямителя. В некоторых генераторах они припаяны, но в некоторых других особенно неприятных конструкциях они приварены точечной сваркой.В конце процесса демонтажа у вас должен быть оголенный генератор с тремя наборами выступающих проводов статора и оголенный вал с двумя контактными кольцами, независимо от того, что осталось от блока выпрямителя, и блока регулятора / щеток.

    Следующим шагом является снятие схемы регулятора с сохранением формы узла регулятор / щетка, а также поиск и сохранение соединений щеток там, где они встречаются с регулятором. И снова потребуется обильное количество силиконового герметика, но, в конце концов, регулятор должен быть открыт.Это универсальная гибридная схема на керамической или металлической подложке, при этом соединения, выходящие из формованного пластика, окружающего их, припаяны к контактным площадкам на их краях. Определить пару соединений щеток, аккуратно распаять их и вытолкнуть цепь регулятора должно быть относительно просто.

    Открытая цепь регулятора с контактами контактного кольца вверху справа.

    Контактные кольцевые контакты прикреплены к их проводам.

    Готовый мотор.

    Наконец, у вас должен быть чистый генератор, набор щеток с отсутствующей схемой регулятора и пластиковая крышка от пыли. Просто припаяйте три провода подходящего большого сечения к трем наборам проводов статора и закройте их термоусадочной пленкой, припаяйте пару более легких проводов к соединениям щеток и снова соберите комплект щеток к генератору. Возможно, вам придется приложить какое-нибудь приспособление для снятия натяжения на проводах к щеткам. Блок выпрямителя не требует повторной сборки, поэтому на некоторых моделях вам может потребоваться сделать проставку, чтобы заменить ее в поддержке одной стороны блока щеток.

    В пылезащитной крышке можно сделать отверстия для всех различных проводов, а в пылезащитной крышке можно установить все проталкиваемые провода. На этом этапе вы переоборудовали свой генератор, и все, что осталось, — это привести его в движение. К счастью, это удивительно простой процесс с готовыми деталями.

    Вождение вашего нового двигателя

    Мотор и контроллер на стенде.

    Так называемый бесщеточный двигатель постоянного тока — это просто двигатель переменного тока со связкой электроники, которая преобразует источник постоянного тока в источник переменного тока для его работы.Они имеют преимущество перед щеточными двигателями постоянного тока в надежности, эффективности и простоте регулирования скорости, но за счет большей сложности.

    Хорошая новость для людей, перерабатывающих автомобильные генераторы переменного тока в электродвигатели, заключается в том, что за небольшие деньги можно приобрести целый ряд контроллеров бесщеточных двигателей в виде электронных регуляторов скорости (ESC), предназначенных для китайских электрических велосипедов и трехколесных мотоциклов. Они используют источник постоянного тока от аккумуляторной батареи и вырабатывают трехфазный переменный ток, подходящий для привода двигателя, подключенного по схеме треугольника, и они хорошо работают с преобразованными генераторами переменного тока.

    У регуляторов скорости

    есть два режима: один для двигателей с датчиками обратной связи на эффекте Холла, а второй — для двигателей без генератора переменного тока. Обычно для этого требуется проводная связь, см. Инструкции для вашего контроллера. Мы обнаружили, что генератор переменного тока хорошо управляется, как двигатель, от источника питания 36 В или 48 В, и пока используется контроллер с достаточной мощностью, он работает надежно. Быстрый поиск на AliExpress по запросу «бесщеточный контроллер двигателя 1500 Вт» дает большой выбор.

    При наличии контроллера существует еще одно требование, чтобы наш генератор переменного тока стал двигателем, он должен иметь постоянный ток на обмотке ротора.Он должен иметь ток около 2 или 3 А, для чего модуль блока питания с ограничением по току отлично справляется с этой задачей. Необходимость использовать эту мощность делает двигатель немного менее эффективным, чем двигатель с постоянным магнитом, но стоимость лома генератора трудно превзойти.

    Мотор, изображенный на наших фотографиях, призван стать одним из пары, обеспечивающей тягу в новом автомобиле для штурма гонок этого года. Личный опыт работы с SMIDSY, робот Robot Wars, привел меня к тому, что я предложил им принудительное воздушное охлаждение, но, в отличие от трехколесных электрических двигателей, они, похоже, хорошо справляются с нагревом.Электродвигатель генератора переменного тока может не быть универсальным решением для любых ваших небольших потребностей в тяговом усилии, но даже в этом случае стоит знать, что это вариант без неожиданных ритуалов подключения. Если вы конвертируете его для проекта, обязательно напишите об этом и отправьте в нашу линию советов!

    Как генератор вырабатывает электричество? Статья о том, как работают генераторы

    Генераторы

    — это полезные устройства, которые подают электроэнергию во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание бизнес-операций.Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

    Как работает генератор?

    Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

    Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, рассматривая генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, текущую через него.

    Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что вышеупомянутый поток электрических зарядов может быть вызван перемещением электрического проводника, такого как провод, содержащий электрические заряды, в магнитном поле. Это движение создает разность напряжений между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.

    Основные компоненты генератора

    Основные компоненты электрогенератора можно в общих чертах классифицировать следующим образом:

    • Двигатель
    • Генератор
    • Топливная система
    • Регулятор напряжения
    • Системы охлаждения и выхлопа
    • Система смазки
    • Зарядное устройство
    • Панель управления
    • Основная сборка / рама
    Ниже приводится описание основных компонентов генератора.
    Двигатель

    Двигатель является источником подводимой механической энергии к генератору. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. При оценке двигателя вашего генератора необходимо учитывать несколько факторов. Для получения полных рабочих характеристик двигателя и графиков технического обслуживания необходимо проконсультироваться с производителем двигателя.

    (a) Тип используемого топлива — двигатели генераторов работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном состоянии) или природный газ. Меньшие двигатели обычно работают на бензине, в то время как более крупные двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.

    (b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV — двигатели OHV отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не на двигателе. блокировать.Двигатели OHV имеют ряд преимуществ перед другими двигателями, такими как:

    • Компактная конструкция
    • Более простой рабочий механизм
    • Прочность
    • Удобство в эксплуатации
    • Низкий уровень шума при работе
    • Низкий уровень выбросов

    Однако OHV-двигатели также дороже других двигателей.

    (c) Чугунная гильза (CIS) в цилиндре двигателя — CIS — это накладка в цилиндре двигателя.Это снижает износ и обеспечивает долговечность двигателя. Большинство двигателей OHV оснащены системой CIS, но очень важно проверить наличие этой особенности в двигателе генератора. CIS — это не дорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

    Генератор

    Генератор переменного тока, также известный как «генераторная головка», представляет собой часть генератора, вырабатывающую электрическую мощность за счет механического входа, подаваемого двигателем.Он содержит набор неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.

    (а) Статор — это стационарный компонент. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.

    (b) Ротор / Якорь — это движущийся компонент, который создает вращающееся магнитное поле одним из следующих трех способов:

    (i) Индукционным способом — они известны как бесщеточные генераторы переменного тока и обычно используются в больших генераторах.
    (ii) Постоянными магнитами — это обычное дело в небольших генераторах переменного тока.
    (iii) Использование возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через совокупность токопроводящих контактных колец и щеток.

    Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

    При оценке генератора переменного тока необходимо учитывать следующие факторы:

    (a) Металлический корпус по сравнению с пластиковым корпусом — цельнометаллическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

    (b) Шариковые подшипники по сравнению с игольчатыми подшипниками. Шариковые подшипники предпочтительнее и служат дольше.

    (c) Бесщеточная конструкция — генератор, в котором не используются щетки, требует меньшего обслуживания, а также производит более чистую мощность.

    Топливная система

    Топливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем от 6 до 8 часов.В случае небольших генераторных установок топливный бак является частью опорной рамы генератора или устанавливается наверху рамы генератора. Для коммерческого использования может потребоваться монтаж и установка внешнего топливного бака. Все подобные установки должны быть одобрены Управлением городского планирования. Щелкните следующую ссылку для получения дополнительных сведений о топливных баках для генераторов.

    Общие характеристики топливной системы включают следующее:

    (a) Трубопровод от топливного бака к двигателю — линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.

    (b) Вентиляционная труба для топливного бака — Топливный бак имеет вентиляционную трубу для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака убедитесь, что металл-металл соприкасается с заправочной форсункой и топливным баком, чтобы избежать искр.

    (c) Переливное соединение от топливного бака к сливной трубе — это необходимо для того, чтобы любой перелив во время заправки бака не вызывал разлив жидкости на генераторную установку.

    (d) Топливный насос — перекачивает топливо из основного накопительного бака в дневной.Топливный насос обычно работает от электричества.

    (e) Топливный водоотделитель / топливный фильтр — он отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

    (f) Топливная форсунка — распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.


    Регулятор напряжения
    Как следует из названия, этот компонент регулирует выходное напряжение генератора.Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.

    (1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток — регулятор напряжения принимает небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбудителя.

    (2) Обмотки возбудителя: преобразование постоянного тока в переменный — теперь обмотки возбудителя работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток.Обмотки возбудителя подключены к блокам, известным как вращающиеся выпрямители.

    (3) Вращающиеся выпрямители: преобразование переменного тока в постоянный — они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор / якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора / якоря.

    (4) Ротор / якорь: преобразование постоянного тока в переменное напряжение — ротор / якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

    Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения вырабатывает меньше постоянного тока. Когда генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, ровно столько, чтобы поддерживать выходную мощность генератора на полном рабочем уровне.

    Когда вы добавляете нагрузку к генератору, его выходное напряжение немного падает.Это вызывает действие регулятора напряжения, и начинается вышеуказанный цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет своей первоначальной полной рабочей мощности.

    Система охлаждения и выпуска
    (а) Система охлаждения
    Продолжительное использование генератора вызывает нагрев различных его компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяемого в процессе.

    Неочищенная / пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше.Водород иногда используется в качестве хладагента для обмоток статора больших генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему очень большие генераторы и малые электростанции часто имеют рядом с собой большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают как основная система охлаждения.

    Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон генератора оставалось минимум 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

    (б) Выхлопная система
    Выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или газового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент нельзя переоценить, поскольку отравление угарным газом остается одной из наиболее частых причин смерти в пострадавших от урагана районах, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

    Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно прикрепляются к двигателю с помощью гибких соединителей, чтобы минимизировать вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба заканчивается снаружи и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не подключена к выхлопной системе любого другого оборудования.Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для эксплуатации вашего генератора получить разрешение от местных властей, чтобы убедиться, что вы соблюдаете местное законодательство и защитите себя от штрафов и других санкций.


    Смазочная система
    Поскольку генератор содержит движущиеся части в своем двигателе, он требует смазки для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе.Уровень смазочного масла следует проверять каждые 8 ​​часов работы генератора. Вы также должны проверять отсутствие утечек смазки и менять смазочное масло каждые 500 часов работы генератора.


    Зарядное устройство
    ST e art функция генератора работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений каких-либо настроек. Выходное напряжение постоянного тока зарядного устройства устанавливается на уровне 2,33 В на элемент, что является точным значением напряжения холостого хода для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.


    Панель управления
    Это пользовательский интерфейс генератора, в котором находятся электрические розетки и элементы управления. В следующей статье представлены дополнительные сведения о панели управления генератором. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.

    (a) Электрический запуск и отключение — панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически отключают агрегат, когда он больше не нужен.

    (b) Манометры двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и мониторинг этих параметров позволяет отключать генератор, когда любой из них превышает соответствующие пороговые уровни.

    (c) Датчики генератора. На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.

    (d) Другие элементы управления — переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.

    Основной узел / рама

    Все генераторы, переносные или стационарные, имеют индивидуальные корпуса, которые обеспечивают структурную опору основания. Рама также позволяет заземлить генерируемые элементы в целях безопасности.

    Электродвигатели и генераторы

    Электродвигатели, генераторы, генераторы и громкоговорители объясняются с помощью анимации и схем.
    Это страница ресурсов Physclips, многоуровневого мультимедийного введения в физику (загрузите анимацию с этой страницы).

    Двигатели постоянного тока

    Простой двигатель постоянного тока имеет катушку с проволокой, которая может вращаться в магнитном поле. В ток в катушке подается через две щетки, которые обеспечивают подвижный контакт с разрезное кольцо. Катушка находится в постоянном магнитном поле. Силы приложили на токоведущих проводах создают крутящий момент на катушке. Сила F на проводе длиной L, по которому течет ток i в магнитном поле. B равно iLB, умноженному на синус угла между B и i, который будет равен 90 °, если поля были равномерно вертикальными.Направление F идет справа ручная линейка *, как показано здесь. Две силы, показанные здесь, равны и противоположны, но они смещены вертикально, поэтому создают крутящий момент. (Силы на две другие стороны катушки действуют по одной и той же линии и поэтому не создают крутящего момента.)
      * Для запоминания направления силы используется ряд различных символов. Некоторые используют правую руку, некоторые — левую. Для студентов, которые знают векторное умножение, легко использовать силу Лоренца напрямую: F = q v X B , откуда F = i dL X Б .Это источник диаграммы, показанной здесь.
    Катушку также можно рассматривать как магнитный диполь или небольшой электромагнит, как указано стрелкой SN: согните пальцы правой руки в направление течения, а большой палец — северный полюс. В эскизе Справа изображен электромагнит, образованный катушкой ротора. как постоянный магнит, и тот же крутящий момент (север притягивает юг) действовать для выравнивания центрального магнита.
      Мы используем синий для Северного полюса и красный для Южного. Это просто соглашение, чтобы сделать ориентацию ясной: нет никакой разницы в материалах на обоих концах магнита, и они обычно не окрашиваются в другой цвет.

    Обратите внимание на эффект щеток на разрезном кольце . Когда плоскость вращающейся катушки достигает горизонтали, щетки разорвут контакт (теряется не так много, потому что это точка нулевого момента все равно — силы действовать внутрь).Угловой момент катушки переносит ее через этот разрыв. точка, и ток течет в противоположном направлении, что меняет направление на противоположное. магнитный диполь. Итак, после прохождения точки останова ротор продолжает движение. повернуть против часовой стрелки и начать выравнивание в обратном направлении. в В следующем тексте я буду в основном использовать картинку «крутящий момент на магните», но имейте в виду, что использование щеток или переменного тока может привести к появлению полюсов электромагнит, о котором идет речь, меняет положение, когда ток меняет направление.

    Крутящий момент, создаваемый в течение цикла, зависит от вертикального разделения две силы. Следовательно, это зависит от синуса угла между ось катушки и поле. Однако из-за разрезного кольца оно всегда в том же смысле. Анимация ниже показывает его изменение во времени, а вы можно остановить на любом этапе и проверить направление, приложив правую руку правило.

    Двигатели и генераторы

    Теперь двигатель постоянного тока также является генератором постоянного тока.Взгляните на следующую анимацию. В катушка, разрезное кольцо, щетки и магнит — это то же оборудование, что и двигатель выше, но катушка вращается, что генерирует ЭДС.

    Если вы используете механическую энергию для вращения катушки (N витков, область A) с равномерной угловая скорость ω в магнитном поле B , это создаст в катушке синусоидальную ЭДС. ЭДС (ЭДС или электродвижущая сила — это почти то же самое, что и напряжение).Пусть θ будет угол между B и нормалью к катушке, поэтому магнитный поток φ равен NAB.cos θ. Закон Фарадея дает:

    Приведенная выше анимация будет называться генератором постоянного тока. Как и в двигателе постоянного тока, концы катушки соединяются с разрезным кольцом, две половины которого контактируют кистями. Обратите внимание, что щетки и разрезное кольцо «исправляют» создаваемую ЭДС: контакты организованы так, что ток всегда будет течь в одном и том же направление, потому что, когда катушка проходит мимо мертвой точки, где щетки встречаются зазор в кольце, соединения между концами катушки и внешние клеммы перевернуты.ЭДС здесь (без учета мертвой зоны, которая обычно бывает при нулевом напряжении) равна | NBAω sin ωt |, как нарисовано.

    Генератор

    Если нам нужен AC, нам не нужно исправление, поэтому нам не нужны разрезные кольца. (Этот это хорошая новость, потому что разрезные кольца вызывают искры, озон, радиопомехи и дополнительный износ. Если хочешь Постоянного тока, часто лучше использовать генератор и выпрямлять диоды.)

    В следующей анимации две кисти соприкасаются с двумя непрерывными кольцами, поэтому две внешние клеммы всегда подключены к одним и тем же концам катушки.Результатом является не исправленная синусоидальная ЭДС, определяемая NBAω sin ωt, который показан на следующей анимации.


    Это генератор переменного тока. Преимущества переменного и постоянного тока генераторы сравниваются в разделе ниже. Выше мы видели, что двигатель постоянного тока также является генератором постоянного тока. Точно так же генератор переменного тока также является двигателем переменного тока. Однако, это довольно негибкий. (Смотри как настоящие электродвигатели работают для более подробной информации.)

    Задний ЭДС

    Теперь, как показывают первые две анимации, двигатели и генераторы постоянного тока могут быть то же самое. Например, двигатели поездов становятся генераторами, когда поезд замедляется: они преобразуют кинетическую энергию в электрическую и мощность обратно в сеть. В последнее время несколько производителей начали выпуск автомобилей. рационально. В таких автомобилях электродвигатели, используемые для привода автомобиля, также используется для зарядки аккумуляторов при остановке автомобиля — это называется регенеративным торможение.

    Итак, вот интересное следствие. Каждый двигатель — это генератор . Это правда, в некотором смысле, даже когда он функционирует как двигатель. ЭДС, что двигатель генерирует называется обратной ЭДС . Обратная ЭДС увеличивается с увеличением скорость из-за закона Фарадея. Итак, если двигатель не нагружен, он очень сильно крутится. быстро и разгоняется до появления обратной ЭДС плюс падение напряжения из-за потерь, равно напряжению питания. Обратную ЭДС можно рассматривать как «регулятор»: он останавливает двигатель, вращающийся бесконечно быстро (что избавляет физиков от некоторого затруднения).Когда двигатель загружен, то фаза напряжения становится ближе к фазе тока (начинает выглядят резистивными), и это кажущееся сопротивление дает напряжение. Итак, спина Требуемая ЭДС меньше, и двигатель вращается медленнее. (Чтобы добавить обратно ЭДС, которая является индуктивной, к резистивной составляющей необходимо добавить напряжения которые не в фазе. См. AC схем.)

    Катушки обычно имеют сердечники

    На практике (и в отличие от схем, которые мы нарисовали) генераторы и постоянный ток двигатели часто имеют сердечник с высокой проницаемостью внутри катушки, так что большие магнитные поля создаются умеренными токами.Это показано слева в рисунок ниже, на котором статоры (магниты, которые являются статическими) постоянные магниты.

    Моторы универсальные

    Магниты статора также могут быть выполнены в виде электромагнитов, как показано выше. справа. Два статора намотаны в одном направлении, чтобы поле в том же направлении, а ротор имеет поле, которое дважды меняет направление за цикл, потому что он подключен к щеткам, которые здесь не указаны.Один Преимущество наличия статоров в двигателе состоит в том, что можно сделать двигатель который работает от переменного или постоянного тока, так называемый универсальный двигатель . Когда вы едете у такого мотора с переменным током ток в катушке меняется дважды в каждом цикле (помимо изменений со щеток), а вот полярность статоров изменяется одновременно, поэтому эти изменения аннулируются. (К сожалению, кисти еще остались, хотя я спрятал их в этом наброске.) За преимущества и недостатки постоянного магнита по сравнению со статорами с обмоткой см. ниже. Также смотрите больше на универсальных моторах.

    Построить простой мотор

    Чтобы построить этот простой, но странный мотор, вам понадобятся два довольно сильных магнита. (подойдут редкоземельные магниты диаметром около 10 мм, магниты), жёсткий медный провод (не менее 50 см), два провода с крокодилом зажимы на обоих концах, фонарь на шесть вольт, две банки для безалкогольных напитков, два блока дерева, липкой ленты и острого гвоздя.

    Сделайте катушку из жесткой медной проволоки, чтобы не было необходимости во внешних устройствах. служба поддержки. Намотайте от 5 до 20 витков по кругу диаметром около 20 мм и два конца радиально направлены наружу в противоположных направлениях. Эти цели будут быть одновременно осью и контактами. Если провод имеет лаковую или пластиковую изоляцию, снимите его на концах.

    Опоры оси могут быть выполнены из алюминия, поэтому что они создают электрический контакт.Например, проткнуть безалкогольный напиток банки с гвоздем, как показано. Расположите два магнита с севера на юг, так что магнитное поле проходит через катушку под прямым углом к оси. Заклейте или приклейте магниты к деревянным блокам (не показаны на схеме), чтобы они оставались на нужной высоте, затем переместите блоки поставить их на место, достаточно близко к катушке. Сначала поверните катушку так что магнитный поток через катушку равен нулю, как показано на схеме.

    Теперь возьмем аккумулятор и два провода с зажимами типа «крокодил». Соединять два вывода батареи к двум металлическим опорам для катушка и она должна повернуться.

    Обратите внимание, что у этого двигателя есть по крайней мере одна «мертвая зона»: он часто останавливается. в положении, когда на катушке отсутствует крутящий момент. Не уходи он горит слишком долго: он быстро разряжает аккумулятор.

    Оптимальное количество витков в катушке зависит от внутреннего сопротивление аккумулятора, качество опорных контактов и тип провода, поэтому вам следует поэкспериментировать с разными значениями.

    Как уже говорилось выше, это тоже генератор, но очень неэффективный. Чтобы увеличить ЭДС, используйте больше витков (может потребоваться использовать более тонкую проволоку и рамку для намотки.) Вы можете использовать например, электродрель, чтобы быстро ее повернуть, как показано на рисунке выше. Воспользуйтесь осциллографом, чтобы посмотреть на генерируемую ЭДС. Это переменный или постоянный ток?

    У этого двигателя нет разрезного кольца, почему он работает на DC? Проще говоря, если бы он был точно симметричным, ничего бы не вышло.Однако, если ток в одном полупериоде немного меньше, чем в другом, то средний крутящий момент не будет равен нулю, и, поскольку он вращается достаточно быстро, угловой момент, приобретенный во время полупериода с большим током, переносит его через полупериод, когда крутящий момент находится в противоположном направлении. По крайней мере, два эффекта могут вызвать асимметрию. Даже если провода полностью зачищены и чистые, контактное сопротивление вряд ли будет одинаковым даже в состоянии покоя. Кроме того, само вращение приводит к прерывистому контакту, поэтому, если в течение одной фазы есть более длительные отскоки, этой асимметрии будет достаточно.В принципе, вы можете частично зачистить провода таким образом, чтобы ток был равен нулю за один полупериод.

    Альтернативная версия простого двигателя Джеймса Тейлор.
    Еще более простой двигатель (который также намного проще для понимания!) — это униполярный двигатель.

    Двигатели переменного тока

    С помощью переменного тока мы можем изменить направление поля без использования щеток.Это хорошие новости, потому что мы можем избежать дуги, образования озона и омическая потеря энергии, которую могут повлечь за собой щетки. Далее, потому что кисти контактируют между движущимися поверхностями, они изнашиваются.

    Первое, что нужно сделать в двигателе переменного тока, — это создать вращающееся поле. ‘Обычный’ Переменный ток от 2-х или 3-х контактной розетки — это однофазный переменный ток — он имеет одну синусоидальную разность потенциалов создается только между двумя проводами — активным и нейтральным. (Обратите внимание, что заземляющий провод не пропускает ток, за исключением электрические неисправности.) При однофазном переменном токе можно создать вращающееся поле. за счет генерации двух противофазных токов с помощью, например, конденсатора. В показанном примере два тока сдвинуты по фазе на 90 °, поэтому вертикальный составляющая магнитного поля синусоидальная, а горизонтальная косусоидальная, как показано. Это дает поле, вращающееся против часовой стрелки.

    (* Меня попросили объяснить это: из простого AC Теоретически, ни катушки, ни конденсаторы не имеют напряжения в фазе с электрический ток.В конденсаторе напряжение максимально, когда заряд закончил течь на конденсатор и вот-вот начнет стекать. Таким образом, напряжение отстает от тока. В чисто индуктивной катушке падение напряжения является наибольшим, когда ток изменяется наиболее быстро, что также когда ток равен нулю. Напряжение (падение) опережает ток. В моторных катушках фазовый угол меньше 90, потому что электрические энергия преобразуется в механическую энергию.)

    На этой анимации графики показывают изменение токов во времени. в вертикальной и горизонтальной катушках. График компонент поля B x и B y показывает, что векторная сумма этих двух полей является вращающейся поле. Основное изображение показывает вращающееся поле. Он также показывает полярность магнитов: как указано выше, синий представляет северный полюс, а красный — южный полюс.

    Если мы поместим постоянный магнит в эту область вращающегося поля, или если мы положим в катушке, ток которой всегда течет в одном и том же направлении, тогда это становится Синхронный двигатель .В широком диапазоне условий двигатель будет повернуть со скоростью магнитного поля. Если у нас много статоров, вместо этого всего двух пар, показанных здесь, то мы могли бы рассматривать его как шаговый двигатель: каждый импульс перемещает ротор на следующую пару задействованных полюсов. Пожалуйста, помните мое предупреждение об идеализированной геометрии: настоящие шаговые двигатели десятки полюсов и довольно сложные геометрические формы!

    Двигатели асинхронные

    Теперь, поскольку у нас есть изменяющееся во времени магнитное поле, мы можем использовать наведенную ЭДС в катушке — или даже просто вихревые токи в проводнике — чтобы ротор магнит.Правильно, если у вас есть вращающееся магнитное поле, вы можете просто вставил проводник и получается. Это дает несколько преимуществ асинхронные двигатели : отсутствие щеток или коммутатора означает более простое производство, нет износ, отсутствие искр, отсутствие образования озона и отсутствие связанных с этим потерь энергии с ними. Слева внизу схематическое изображение асинхронного двигателя. (Для фотографий настоящие асинхронные двигатели и более подробную информацию см. в разделе «Индукция». двигатели.) Ваш браузер не поддерживает видео тег.

    Анимация справа представляет двигатель с короткозамкнутым ротором . Белка клетка имеет (во всяком случае, в этой упрощенной геометрии!) два круглых проводника, соединенных несколькими прямыми стержнями. Любые два стержня и соединяющие их дуги образуют катушка — на что указывают синие черточки на анимации. (Только два из для простоты показано много возможных схем.)

    На этой схеме показано, почему их можно назвать двигателями с короткозамкнутым ротором.Реальность иная: фотографии и подробности см. В разделе «Индукция». моторы. Проблема с показанными асинхронными двигателями и двигателями с короткозамкнутым ротором в этой анимации показано, что конденсаторы высокой стоимости и высокого напряжения стоят дорого. Одно из решений — двигатель с экранированным полюсом, но его вращающийся поле имеет некоторые направления, в которых крутящий момент небольшой, и имеет тенденцию бежать назад при некоторых условиях. Самый простой способ избежать этого — использовать многофазные двигатели.

    Трехфазные асинхронные двигатели переменного тока

    Однофазный используется в домашних условиях для приложений с низким энергопотреблением, но у него есть недостатки. Во-первых, он выключается 100 раз в секунду (вы не обратите внимание, что флуоресцентные лампы мигают с такой скоростью, потому что ваши глаза слишком медленные: даже 25 изображений в секунду на экране телевизора достаточно, чтобы дать иллюзию непрерывного движения.) Во-вторых, это делает его неудобным для создания вращающихся магнитных полей.По этой причине некоторая высокая мощность (несколько кВт) для бытовых устройств может потребоваться трехфазная установка. Промышленное применение широко использовать трехфазный двигатель, трехфазный асинхронный двигатель является стандартным рабочая лошадка для приложений большой мощности. Три провода (не считая земли) несут три возможных разности потенциалов, которые не совпадают по фазе с каждым другое на 120 °, как показано на анимации ниже. Таким образом, три статора плавно вращающееся поле. (Видеть это ссылка для получения дополнительной информации о трехфазном питании.)

    Если поместить постоянный магнит в такой набор статоров, он станет синхронным. трехфазный двигатель . На анимации изображена беличья клетка, в которой простота показана только одна из многих петель наведенного тока. Без механической нагрузки, он вращается практически синхронно с вращающимся полем. Ротор не обязательно должен быть беличьей клеткой: на самом деле любой проводник, который будет переносимые вихревые токи будут вращаться, стремясь следовать за вращающимся полем.Такая компоновка может дать асинхронный двигатель , обладающий высоким КПД, высокая мощность и высокие крутящие моменты в диапазоне скоростей вращения.

    Линейные двигатели

    Набор катушек можно использовать для создания магнитного поля, которое переводит, скорее, чем вращается. На паре катушек на анимации ниже подается импульс от слева направо, поэтому область магнитного поля перемещается слева направо. А постоянный или электромагнит будет стремиться следовать за полем.Так что простой плита из проводящего материала, потому что наведенные в ней вихревые токи (не показаны) содержат электромагнит. В качестве альтернативы мы могли бы сказать, что из Фарадея закон, ЭДС в металлической плите всегда индуцируется, чтобы противодействовать любому изменению в магнитном потоке, а силы на токах, вызванные этой ЭДС, сохраняют поток в плите почти постоянный. (Вихревые токи на этой анимации не показаны.)

    В качестве альтернативы мы могли бы иметь комплекты катушек с питанием в подвижной части, и наводить вихревые токи в рельсе.В любом случае получается линейный двигатель, который был бы полезен, скажем, для поездов на магнитной подвеске. (В анимации геометрия как обычно на этом сайте, в высшей степени идеализирован, и только один вихревой ток показано.)

    Некоторые примечания к двигателям переменного и постоянного тока для приложений большой мощности

      Этот сайт изначально был написан в помощь старшеклассникам. и учителя в Новом Южном Уэльсе, Австралия, где сосредоточены новые учебные программы по истории и приложениям физики за счет самой физики, был введен.В новой программе в одной из точек есть следующее: озадачивающее требование: «объясните, что двигатели переменного тока обычно производят малую мощность и связывают это с их использованием в электроинструментах «.
    Двигатели переменного тока используются для приложений с большой мощностью, когда это возможно. Три фазные асинхронные двигатели переменного тока широко используются для приложений большой мощности, в том числе тяжелая промышленность. Однако такие двигатели не подходят, если многофазность недоступна, или трудно доставить. Электропоезда тому пример: строить проще линии электропередач и пантографы, если нужен только один активный проводник, так что это обычно имеет постоянный ток, и многие двигатели поездов работают от постоянного тока.Однако из-за недостатков постоянного тока для высокой мощности, более современные поезда преобразуют постоянный ток в переменный, а затем бегут трехфазные двигатели.

    Однофазные асинхронные двигатели имеют проблемы с объединением приложений высокая мощность и гибкие условия нагрузки. Проблема заключается в создании вращающееся поле. Конденсатор может использоваться для подачи тока в один набор впереди катушки, но дорогие высоковольтные конденсаторы стоят дорого. Затененный Вместо них используются полюсы, но крутящий момент на некоторых углах невелик.Если нельзя создают плавно вращающееся поле, и если груз «проскальзывает» далеко за поле, то крутящий момент падает или даже меняется на противоположное.

    В электроинструментах и ​​некоторых приборах используются щеточные электродвигатели переменного тока. Кисти вводят потери (плюс образование дуги и озона). Полярность статора изменена. 100 раз в секунду. Даже если материал сердечника выбран так, чтобы минимизировать гистерезис потери («потери в железе»), это способствует неэффективности и возможности перегрева.Эти моторы можно назвать универсальными. двигатели, потому что они могут работать на постоянном токе. Это дешевое, но грубое решение. и неэффективно. Для приложений с относительно низким энергопотреблением, таких как электроинструменты, неэффективность обычно экономически не важна.

    Если доступен только однофазный переменный ток, можно исправить переменный ток и использовать Двигатель постоянного тока. Раньше сильноточные выпрямители были дорогими, но сейчас они становятся все более дорогими. менее дорогой и более широко используемый. Если вы уверены, что понимаете принципы, пора перейти к разделу «Как настоящие электродвигатели работают Джона Стори.Или продолжайте здесь, чтобы найти о громкоговорителях и трансформаторах.


    Громкоговорители

    Громкоговоритель — это линейный двигатель с небольшим диапазоном. Имеет одинарное перемещение катушка, которая постоянно, но гибко подключена к источнику напряжения, поэтому кистей нет.
    The катушка движется в поле постоянного магнита, который обычно имеет форму для создания максимального усилия на катушке.Подвижная катушка не имеет сердечника, поэтому его масса невелика, и он может быстро ускоряться, что позволяет частота движения. В громкоговорителе катушка прикреплена к легкому весу. бумажный конус, который поддерживается на внутреннем и внешнем краях круглыми, плиссированные бумажные «пружины». На фотографии ниже динамик выходит за рамки нормальный верхний предел его перемещения, поэтому катушка видна над полюса магнита.

    Для низкочастотного звука с большой длиной волны необходимы большие диффузоры.Диаметр динамика, показанного ниже, составляет 380 мм. Колонки, предназначенные для низкие частоты называются вуферами. Они имеют большую массу и поэтому трудно быстро разогнаться для высокочастотных звуков. На фотографии ниже часть вырезана, чтобы показать внутренние компоненты.

    Твитеры — громкоговорители, предназначенные для высоких частот — могут быть просто динамики аналогичной конструкции, но с небольшими диффузорами и катушками малой массы.В качестве альтернативы они могут использовать пьезоэлектрические кристаллы для перемещения конуса.

    Громкоговорители представляют собой линейные двигатели со скромным диапазоном — возможно, десятки мм. Подобные линейные двигатели, хотя, конечно, без бумажного конуса, часто используется для радиального перемещения считывающей и записывающей головки на дисководе.
    Громкоговорители как микрофоны
    На картинке выше вы можете видеть, что картонная диафрагма (конус громкоговорителя) соединена с катушкой с проводом в магнитном поле.Если звуковая волна перемещает диафрагму, катушка будет двигаться в поле, создавая напряжение. Это принцип динамического микрофона — хотя в большинстве микрофонов диафрагма гораздо меньше конуса громкоговорителя. Итак, громкоговоритель должен работать как микрофон. Хороший проект: все, что вам нужно, это громкоговоритель и два провода, чтобы подключить его ко входу осциллографа или микрофонному входу вашего компьютера. Два вопроса: как вы думаете, что масса диффузора и катушки повлияет на частотную характеристику? Как насчет длины волны звуков, которые вы используете?

    Предупреждение: настоящие двигатели сложнее

    Эскизы двигателей были схемами, чтобы показать принципы.Пожалуйста, не сердитесь, если, когда вы разбираете мотор, он выглядит больше. сложный! (Смотри как настоящие электродвигатели работают.) Например, типичный двигатель постоянного тока вероятно, будет иметь много отдельно намотанных катушек для обеспечения более плавного крутящего момента: всегда есть одна катушка, для которой синусоидальный член близок к единице. Это показано ниже для двигателя с обмотанными статорами (вверху) и постоянные статоры (внизу).

    Трансформаторы

    На фотографии изображен трансформатор, предназначенный для демонстрационных целей: первичная и вторичная обмотки четко разделены и могут быть удалены и заменен поднятием верхней части сердечника.Для наших целей отметим что у катушки слева меньше катушек, чем у правой (вставки показать крупные планы).

    На эскизе и схеме показан повышающий трансформатор. Чтобы сделать понижающий трансформатор, достаточно разместить источник справа, а нагрузку — слева. ( Важно Примечание по безопасности : для настоящего трансформатора вы можете только «подключить его задом наперед» только после проверки соответствия номинального напряжения.) Итак, как же трансформатор работает?

    Сердечник (заштрихованный) имеет высокую магнитную проницаемость, т.е. материал, образующий магнитное поле намного легче, чем свободное пространство, из-за ориентации атомных диполей. (На фотографии сердечник — ламинированное мягкое железо.) В результате поле сконцентрировано внутри ядра, и почти силовые линии не выходят из ядра. Если следует, что магнитные потоки φ через первичный и вторичный примерно равны, как показано.Из Фарадея По закону ЭДС на каждом витке первичной или вторичной обмотки составляет −dφ / dt. Если пренебречь сопротивлением и другими потерями в трансформаторе, вывод напряжение равно ЭДС. Для N p витков первичной обмотки, это дает

    Для N с витков вторичной обмотки это дает Разделение этих уравнений дает уравнение трансформатора где r — коэффициент поворотов. А что с током? Если пренебречь потерями в трансформатор (см. ниже раздел об эффективности), и если мы предположим, что напряжение и ток имеют одинаковое фазовое соотношение в первичной обмотке и вторичный, то из сохранения энергии мы можем записать в установившемся состоянии:
      Power in = power out, поэтому

      V p I p = V s I s , откуда

      I с / I p = N p / N с = 1 / r.

    Так что ничего не получишь даром: если увеличишь напряжение, то уменьшишься. ток (по крайней мере) в тот же фактор. Обратите внимание, что на фотографии катушка с большим количеством витков имеет более тонкий провод, потому что она предназначена для меньшего ток, чем тот, с меньшим количеством витков.

    В некоторых случаях целью упражнения является уменьшение силы тока. В силе линии передачи, например, потери мощности при нагревании проводов из-за их ненулевое сопротивление пропорционально квадрату тока.Таким образом, передача электроэнергии от электростанции позволяет сэкономить много энергии. в город при очень высоких напряжениях, так что токи невелики.

    Наконец, и снова предполагая, что трансформатор идеален, давайте спросим, ​​что резистор во вторичной цепи «похож» на первичную цепь. В первичном контуре:

      V p = V s / r и I p = Я с .г так

      V p / I p = V s / r 2 I s = Р / р 2 .

    R / r 2 называется отраженным сопротивлением . При условии, что частота не слишком высока, и при наличии сопротивления нагрузки (условия обычно встречается в практических трансформаторах), индуктивное сопротивление первичной обмотки намного меньше, чем это отраженное сопротивление, поэтому первичная цепь ведет себя как если бы источник управлял резистором номиналом R / r 2 .
    КПД трансформаторов
    На практике реальные трансформаторы имеют КПД менее 100%.
    • Во-первых, это резистивные потери в катушках (потеря мощности I 2 .r). Для данного материала сопротивление катушек можно уменьшить, сделав их поперечное сечение большое. Удельное сопротивление также можно сделать низким, используя медь высокой чистоты. (См. Дрейф скорости и закон Ома.)
    • Во-вторых, в сердечнике наблюдаются потери на вихревые токи.Это может быть уменьшается за счет ламинирования сердечника. Ламинирование уменьшает площадь цепей в ядре, и таким образом уменьшите ЭДС Фарадея, и, таким образом, текущий текущий в ядре, и таким образом теряется энергия.
    • В-третьих, в сердечнике есть гистерезисные потери. Намагничивание и кривые размагничивания магнитных материалов часто немного отличаются (гистерезис или зависимость от истории), и это означает, что требуемая энергия намагничивать сердечник (при увеличении тока) не совсем восстанавливается во время размагничивания.Разница в энергии теряется в виде тепла. в основном.
    • Наконец, геометрический дизайн, а также материал сердечника могут быть оптимизированным, чтобы гарантировать, что магнитный поток в каждой катушке вторичной обмотки почти такой же, как и в каждой катушке первичной обмотки.
    Подробнее о трансформаторах: генераторы переменного и постоянного тока
    Трансформаторы работают только от переменного тока, что является одним из больших преимуществ переменного тока. Трансформеры позволяют понижать 240 В до уровня, удобного для цифровой электроники (всего несколько вольт) или для других приложений с низким энергопотреблением (обычно 12 В).Трансформеры повышайте напряжение для передачи, как упомянуто выше, и понижайте для безопасности распределение. Без трансформаторов потери электроэнергии при распределении сети, и без того высокие, были бы огромными. Возможно преобразование напряжения в DC, но сложнее, чем в AC. Кроме того, такие преобразования часто неэффективно и / или дорого. Дополнительным преимуществом переменного тока является то, что его можно использовать на двигателях переменного тока, которые обычно предпочтительнее двигателей постоянного тока для приложений большой мощности.

    Другие ресурсы от нас

    Некоторые внешние ссылки на веб-ресурсы по двигателям и генераторам

    • Гиперфизика: Электромоторы с сайта HyperPhysics в штате Джорджия. Отлично сайт в целом , и моторный отсек для этого идеально подходит. Хороший использование веб-графики. Производит двигатели постоянного, переменного тока и асинхронные двигатели и имеет обширный ссылки
    • Громкоговорители .. Еще больше хороших материалов от Государственной Гиперфизики Джорджии.Хорошая графика, хорошие объяснения и ссылки. Этот громкоговоритель сайт также включает в себя вложения.
    • http://members.tripod.com/simplemotor/rsmotor.htm A сайт, описывающий двигатель, построенный студентами. Ссылки на другие двигатели, построенные тот же студент и ссылки также на сайты о моторах.
    • http://www.specamotor.com A сайт, который сортирует двигатели различных производителей в соответствии со спецификациями, введенными пользователем.

    В чем разница между постоянными магнитами и наличие электромагнитов в двигателе постоянного тока? Это делает его более эффективным или более могущественный? Или просто дешевле?

    Когда я получил этот вопрос на Высшем Доска объявлений школьной физики, я отправил ее Джону Стори, выдающийся астроном и строитель. электромобилей.Вот его ответ:

    В общем, для небольшого двигателя намного дешевле использовать постоянные магниты. Материалы для постоянных магнитов продолжают совершенствоваться и стали настолько недорогими что даже правительство время от времени присылает вам бессмысленные магниты на холодильник через почту. Постоянные магниты также более эффективны, потому что нет энергии тратится на создание магнитного поля. Так зачем вообще использовать раневое поле Двигатель постоянного тока? Вот несколько причин:

    • Если вы строите действительно большой двигатель, вам понадобится очень большой магнит и в какой-то момент раневое поле может подешеветь, особенно если очень Для создания большого крутящего момента необходимо сильное магнитное поле.Имейте это в виду если вы проектируете поезд. По этой причине в большинстве автомобилей есть стартеры. которые используют поле раны (хотя некоторые современные автомобили теперь используют постоянные магнитные двигатели).
    • У постоянного магнита магнитное поле имеет фиксированное значение (то есть что означает «постоянный»!) Напомним, что крутящий момент, создаваемый двигателем заданная геометрия равна произведению тока через якорь и напряженность магнитного поля.С двигателем с возбужденным полем у вас есть возможность изменения тока через поле и, следовательно, изменения моторные характеристики. Это открывает ряд интересных возможностей; вы ставите обмотку возбуждения последовательно с якорем, параллельно, или кормить из отдельно контролируемого источника? Пока есть достаточно крутящий момент для преодоления нагрузки на двигатель, внутреннего трения и т. д., чем слабее магнитное поле, тем * быстрее * двигатель будет вращаться (при фиксированной Напряжение).Сначала это может показаться странным, но это правда! Итак, если вы хотите двигатель, который может производить большой крутящий момент в состоянии покоя, но при этом сильно вращаться скорости при низкой нагрузке (как продвигается конструкция поезда?), возможно раневое поле — вот ответ.
    • Если вы хотите, чтобы ваш двигатель работал как от переменного, так и от постоянного тока (так называемый «универсальный» двигатель), магнитное поле должно менять свою полярность каждые полупериод Электропитание переменного тока, чтобы крутящий момент на роторе всегда был в одном и том же направлении.Очевидно, что для достижения этой цели вам понадобится мотор с возбужденным полем.

    Мнения, выраженные в этих заметках, принадлежат мне и не обязательно отражают политика Университета Нового Южного Уэльса или Школы физики. В анимации сделал Джордж Hatsidimitris.
    Джо Вулф / [email protected]/ 61-2-9385 4954 (UT + 10, +11 окт-март)

    Как работают генераторы | Электрогенераторы

    Какие части у электрического генератора?

    Генератор состоит из девяти частей, и все они играют роль в передаче энергии туда, где она больше всего нужна.Части генератора:

    1. Двигатель. Двигатель подает энергию на генератор. Мощность двигателя определяет, сколько электроэнергии может обеспечить генератор.
    1. Генератор . Здесь происходит преобразование механической энергии в электрическую. Генератор, также называемый «genhead», содержит как движущиеся, так и неподвижные части, которые работают вместе, создавая электромагнитное поле и движение электронов, которые генерируют электричество.
    1. Топливная система . Топливная система позволяет генератору производить необходимую энергию. Система включает топливный бак, топливный насос, трубопровод, соединяющий бак с двигателем, и возвратный трубопровод. Топливный фильтр удаляет мусор до того, как он попадет в двигатель, а форсунка нагнетает топливо в камеру сгорания.
    1. Регулятор напряжения . Этот компонент помогает контролировать напряжение вырабатываемой электроэнергии.Это также помогает преобразовать электричество из переменного тока в постоянный, если это необходимо.
    1. Системы охлаждения и выхлопа . Генераторы выделяют много тепла. Система охлаждения предотвращает перегрев машины. Выхлопная система направляет и удаляет дымовую форму во время работы.
    1. Система смазки . Внутри генератора много маленьких движущихся частей. Очень важно смазать их соответствующим образом моторным маслом, чтобы обеспечить бесперебойную работу и защитить их от чрезмерного износа.Уровни смазки следует проверять регулярно, каждые 8 ​​часов работы.
    1. Зарядное устройство . Батареи используются для запуска генератора. Зарядное устройство для батареи — это полностью автоматический компонент, который обеспечивает готовность батареи к работе в случае необходимости, подавая на нее постоянное низкое напряжение.
    1. Панель управления . Панель управления контролирует все аспекты работы генератора от скорости запуска и работы до выходов.Современные устройства даже способны определять падение или отключение питания и могут запускать или выключать генератор автоматически.
    1. Основная сборка / рама . Это корпус генератора. Это та часть, которую мы видим; структура, которая держит все это на месте.

    Какое топливо нужно для электрогенераторов?

    Современные электрические генераторы доступны во многих вариантах заправки топливом. Дизель-генераторы — самые популярные промышленные генераторы на рынке.К бытовым генераторам чаще всего относятся: генераторы природного газа или генераторы пропана, в то время как портативные генераторы меньшего размера обычно работают на бензине, дизельном топливе или пропане. Некоторые генераторы могут работать на двух видах топлива и работают как на бензине, так и на дизельном топливе.

    Топливные баки генератора

    Топливная система обеспечивает генератор необходимым сырьем для выработки электроэнергии, инициируя процесс внутреннего сгорания. Без топлива не может происходить горение, и генератор не может преобразовывать механическую энергию в электрическую.Топливо для генератора необходимо хранить на месте, чтобы генератор можно было сразу же запустить в работу, когда это необходимо.

    В зависимости от типа генератора и его применения топливные баки могут быть установлены на раме генератора или могут быть внешними баками, расположенными далеко от самого генератора. Как правило, чем больше генератор и чем дольше он должен работать, тем больше топливный бак. Топливо для генератора хранится в баках разной емкости, в зависимости от предполагаемого использования генератора и требуемой мощности.Танки можно размещать над землей, под землей или под базой. Резервуары вспомогательной базы предназначены для хранения менее 1000 галлонов топлива и расположены над землей, но ниже основания генераторной установки.

    Надземные и подземные резервуары для хранения топлива генератора — лучший выбор для нужд большой емкости. Подземные резервуары для хранения дороже в установке, но они, как правило, служат дольше, поскольку защищены от непогоды. У обоих типов резервуаров для хранения топлива есть свои плюсы и минусы, но вы не будете одиноки в принятии решения.Топливные баки генераторов и топливные системы генераторов должны соответствовать ряду требований и разрешений, прежде чем их можно будет установить, независимо от того, предназначена ли установка для жилого или коммерческого использования.

    Основной кодекс, регулирующий топливные баки генератора в Соединенных Штатах, — это Кодексы и стандарты Национальной ассоциации противопожарной защиты (NFPA), в частности разделы NFPA 30 и NFPA 37. Таким образом, все запросы на топливный бак генератора должны подаваться в Государственную пожарную службу. Маршалла для утверждения.

    Чтобы определить минимальную требуемую емкость топливного бака, вам нужно подумать о том, как вы собираетесь использовать генератор.В случае кратковременных или редких отключений электроэнергии может быть приемлемым резервный генератор с меньшим резервуаром для хранения, однако вам нужно будет наполнять резервуар чаще, чем вам нужно будет пополнять резервуары большего размера. Резервуары большего размера могут потребоваться, если вы планируете снабжать энергией крупный коммерческий объект основным генератором или если вы подвержены длительным и частым перебоям в подаче электроэнергии.

    Ваш поставщик генератора может помочь вам определить оптимальный размер топливного бака, чтобы у вас было достаточно топлива, когда оно вам понадобится.Еще одна вещь, о которой следует помнить как при покупке генератора, так и при выборе топливного бака для генератора, — это стоимость и доступность топлива в вашем регионе. Перед покупкой генератора рекомендуется поговорить с местными поставщиками топлива, чтобы получить лучшее представление о стоимости и логистике, связанных с получением топлива для генератора.

    Выхлопные системы генераторов и средства контроля выбросов

    Поскольку машины, работающие на ископаемом топливе и работающие непрерывно, даже если это время работы нестабильно, генераторы должны быть оснащены компонентами для их охлаждения и фильтрации выбросов.Системы охлаждения и вентиляции генератора уменьшают и отводят тепло различными способами:

    • Вода. Для охлаждения компонентов генератора можно использовать воду. Этот тип системы охлаждения обычно ограничен конкретными ситуациями или очень большими установками мощностью 2250 кВт и выше.
    • Водород. Водород — очень эффективный хладагент, который используется для поглощения тепла, выделяемого работающим генератором. Тепло передается теплообменнику и вторичному охлаждающему контуру, которые часто расположены в больших местных градирнях.
    • Радиаторы и вентиляторы. Генераторы меньшего размера охлаждаются за счет комбинации стандартного радиатора и вентилятора.

    Пары, выделяемые генераторами, аналогичны выхлопным газам других бензиновых или дизельных двигателей. В их состав входят токсичные химические вещества, такие как углекислый газ, который необходимо отфильтровать и удалить из выбросов. Выхлопная система генератора справляется с этой задачей.

    Выхлопные трубы подсоединены к двигателю, где они направляют дым вверх, наружу и от генератора и установки.Труба выходит за пределы здания, в котором находится генератор, и должна заканчиваться далеко от дверей, окон и других зон забора воздуха.

    Помимо выхлопных систем, некоторые генераторы подлежат федеральному контролю за выбросами. Контролируемые выбросы генератора: оксид азота (NOx), углеводороды, оксид углерода (CO) и твердые частицы.

    В целом аварийные генераторы и генераторы, которые работают менее 100 часов в год, не подпадают под федеральные требования по выбросам от генераторов, однако постоянно установленные основные генераторы и резервные генераторы подчиняются федеральным требованиям по выбросам в соответствии с тремя правилами EPA:

    • Национальный стандарт выбросов опасных загрязнителей воздуха (NESHAP) — для поршневых двигателей внутреннего сгорания (RICE). 40 Свод федеральных правил, часть 63, подраздел ZZZZ. Также известно как правило RICE.
    • New Source Performance Standards (NSPS) — Стандарты производительности для стационарных двигателей с искровым зажиганием . 40 CFR, часть 60, подраздел JJJJ. Также известно как правило NSPS с искровым зажиганием.
    • Стандарты характеристик стационарных двигателей внутреннего сгорания с воспламенением от сжатия . 40 Свода федеральных правил, часть 60, подраздел IIII. Также известно как правило сжатия зажигания NSPS.

    Хорошая новость заключается в том, что многие новые генераторные установки уже соответствуют стандартам выбросов от генераторов благодаря производственным усовершенствованиям. Старые генераторы могут быть заменены на устаревшие, что делает их освобожденными от федеральных правил и подчиняется только государственным и местным стандартам выбросов. Требования к контролю выбросов различаются в зависимости от производителя, размера генератора и даты производства, поэтому лучший способ определить ваши требования к выбросам — поговорить с продавцом или производителем генератора.

    Для более глубокого изучения нормативов выбросов см. Этот официальный документ Cummins «Влияние нормативов выбросов Уровня 4 на энергетическую отрасль».

    Панель управления генератора и автоматический резерва (АВР)

    Одним из важнейших компонентов современных генераторов является панель управления генератором. Панель управления — это мозг генератора, а также пользовательский интерфейс генератора; точка, в которой вы будете получать доступ и управлять работой генератора.

    Многие панели управления оснащены автоматическим переключателем резерва (АВР), который постоянно контролирует поступающую мощность. Когда уровень мощности падает или полностью отключается, ATS сигнализирует панели управления о запуске генератора.Аналогичным образом, когда поступающее питание восстанавливается, ATS сигнализирует панели управления о необходимости выключить генератор и повторно подключается к электросети.

    В дополнение к круглосуточному мониторингу панель управления генератором предоставляет обширную информацию для менеджеров сайта:

    • Манометры двигателя предоставляют важную информацию об уровнях масла и жидкости, напряжении аккумуляторной батареи, частоте вращения двигателя и часах работы. Во многих генераторах панель даже автоматически отключает двигатель, когда обнаруживает проблему с уровнями жидкости или другими аспектами работы генератора.
    • Манометры генератора предоставляют ценную информацию о выходном токе, напряжении и рабочей частоте.

    Какое обслуживание требуется для генератора?

    Генераторы

    представляют собой двигатели и требуют регулярного технического обслуживания двигателя для обеспечения надлежащей работы. Поскольку многие генераторы используются для обеспечения резервного питания в случае аварийных ситуаций, операторам крайне важно проводить регулярные проверки и проверки своих генераторов, чтобы гарантировать, что машина будет работать по мере необходимости, когда это необходимо.

    Самая лучшая программа обслуживания генератора — та, которую рекомендует производитель, но, как минимум, все планы обслуживания генератора должны включать регулярное и текущее:

    • Осмотр и снятие изношенных деталей.
    • Проверка уровней жидкости, включая охлаждающую жидкость и топливо.
    • Осмотр и чистка аккумуляторной батареи.
    • Проведение теста банка нагрузки на генераторе и автоматическом переключателе.
    • Проверка пульта управления на точность показаний и индикаторов.
    • Замена воздушного и топливного фильтров.
    • Осмотр системы охлаждения.
    • Смазка деталей по мере необходимости.

    Обязательно ведите журнал обслуживания для ведения записей. Включите все показания, уровни жидкости и т. Д., А также дату и показания счетчика моточасов генератора. Эти записи можно сравнивать с будущими записями и использовать для помощи в обнаружении отклонений или изменений в работе, которые могут указать вам на скрытые проблемы, которые могут стать серьезными проблемами, если их не проверить.

    Генераторы

    могут прослужить десятилетия при правильном обслуживании. Эти простые небольшие вложения со временем окупятся за счет экономии на дорогостоящем ремонте или даже полной замене генератора.

    Добавить комментарий

    Ваш адрес email не будет опубликован.