Осциллограф из компьютера или ноутбука своими руками: схемы и инструкция
Сегодня часто вместо того, чтобы сделать, например, осциллограф из компьютера, большинство людей предпочитают просто приобрести USB-осциллоскоп. Но, пройдясь по магазинам, можно увидеть, что цена бюджетных осциллографов начинается от 200 долларов. А серьезная аппаратура и вовсе стоит в разы дороже. Именно тем людям, которых не устраивает эта цена, проще всего сделать осциллограф из ноутбука или компьютера своими руками.Что необходимо использовать
Самая оптимальная сегодня – это программа Osci, она имеет интерфейс, похожий на классический осциллограф: на мониторе находится стандартная сетка, с помощью которой вы сможете сами померить амплитуду или длительность.
Из недостатков этой программы можно выделить то, что она работает немного нестабильно. Во время работы утилита может иногда зависать, а чтобы затем ее сбросить, надо использовать специализированный TaskManager. Но все это компенсируется тем, что программа имеет привычный интерфейс, и довольно удобна в использовании, а также имеет большое количество функций, они дают возможность сделать полноценно работающий осциллограф из компьютера или ноутбука.
На заметку
Нужно сказать, что в комплекте данных программ есть специальный низкочастотный генератор, но его использование нежелательно, он пытается полностью сам контролировать работу драйвера звуковой карты, что провоцирует выключение звука. Если решили его опробовать, позаботьтесь, чтобы у вас была точка восстановления либо сделайте бэкап вашей ОС. Самым оптимальным способом, как сделать своими руками из компьютера осциллограф, будет скачивание рабочего генератора.
«Авангард»
Это отечественная программа, она не имеет привычной и стандартной измерительной сетки, и отличается очень большим экраном для фотографирования скриншотов, но в то же время позволяет использовать установленный частотомер и вольтметр амплитудных значений. Это частично компенсирует недостатки, указанные выше.
Сделав этот осциллограф из компьютера, вы столкнетесь со следующим: на небольших уровнях показателей вольтметр и частотомер могут значительно искажать данные, но для новичков-радиолюбителей, эта утилита будет вполне достаточной. Еще одной полезной функцией будет то, что можно делать абсолютно независимую калибровку двух уже находящихся шкал установленного вольтметра.
Как это использовать
Из-за того, что входные цепи звуковой карты имеют специальный разделительный конденсатор, то компьютер в роли осциллографа может работать только с закрытым входом. Таким образом, на мониторе будет видна лишь переменная составляющая показателей, но, имея определенную сноровку, с помощью этих программ можно сделать измерение показателя постоянной составляющей. Это очень актуально в случае, когда, к примеру, время отсчета мультиметра не дает возможности зафиксировать некоторое значение амплитуды напряжения на конденсаторе, заряжающегося с помощью крупного резистора.Нижнее значение напряжения ограничивается уровнем фона и шума и имеет примерно 1 мВ. Верхний предел ограничивается лишь по показателям делителя и достигает более сотни вольт. Частотный диапазон ограничивается самой возможностью звуковой карты и для старых компьютеров составляет около 20 кГц.
Естественно, в этом случае рассматривается довольно примитивное устройство. Но когда у вас нет возможности, например, использовать USB-осциллограф, то в данном случае его использование вполне приемлемо. Этот прибор поможет вам в ремонте разной аудиоаппаратуры, или может быть использован для учебных целей. Кроме того, программа-осциллограф даст возможность вам сохранить эпюру для иллюстрации материала или для размещения в сети.
Электрическая схема
Если вам необходим приставка к компьютеру, то сделать осциллограф будет гораздо сложнее. Сегодня в интернете можно отыскать довольно большое количество разных схем этих устройств, и для изготовления, например, двухканального осциллографа вам будет необходимо только их продублировать. Второй канал зачастую актуален в случае, когда надо сравнивать два сигнала или же осциллограф используется для подключения внешней синхронизации.
Как правило, схемы очень простые, но так, вы самостоятельно обеспечите очень большой диапазон доступных измерений, используя минимум радиодеталей. Причем аттенюатор, который изготавливается по классической схеме, потребовал бы от вас наличие узкоспециализированных высокомегаомных резисторов, а его сопротивление на входе все время менялось при переключении диапазона. Поэтому вы бы испытывали некоторые ограничения при использовании обычных осциллографических проводов, рассчитанных на импеданс входа не больше 1 мОм.
Как выбрать резисторы делителя напряжения
Из-за того, что зачастую радиолюбители испытывают сложности с тем, чтобы подобрать прецизионные резисторы, часто бывает так, что приходится выбирать устройства широкого профиля, которые надо максимально точно подогнать, иначе сделать своими руками осциллограф из компьютера не получится.
Подстроечные резисторы делителя напряжения
В этом случае каждое плечо делителя имеет два резистора, один является постоянным, второй – подстроечный. Минус этого варианта, это его громоздкость, но точность ограничивается лишь тем, какие доступные характеристики имеет измерительный аппарат.
Как выбрать обычные резисторы
Еще один вариант сделать осциллограф из компьютера – это выбрать пары резисторов. Точность в этом случае обеспечивается благодаря тому, что используются пары из двух комплектов с довольно приличным разбросом. Тут важно изначально выполнить тщательные замеры всех устройств, а после подобрать пары, суммарное сопротивление которых будет самым подходящим для вашей схемы.
Подгонка резисторов
Сегодня подгонка резисторов с помощью удаления части пленки часто используется даже в современной промышленности, то есть так, нередко делается осциллограф из компьютера.
Но нужно сказать, что если вы хотите подгонять высокоомные резисторы, то резистивная пленка не должна быть разрезана насквозь. Так как в этих устройствах она находится на цилиндрической поверхности в виде спирали, потому делать подпил надо предельно аккуратно, чтобы не допустить разрыва цепи. Затем:
- Чтобы подогнать резисторы в домашних условиях, надо просто использовать обычную наждачную бумагу «нулевку».
- Изначально у резистора, у которого находится меньшее сопротивление, бережно удаляется защитный слой краски.
- Затем нужно подпаять резистор к концам, они и подклеиваются к мультиметру. С помощью аккуратных движений наждачкой показатели сопротивления резистора выводятся до нужного значения.
После, когда резистор полностью подогнан, место пропила покрывают слоем специального защитного лака.
Сегодня этот способ наиболее быстрый и простой, но при этом дает хорошие результаты, что и сделало его оптимальным для домашних условий.
Что нужно учесть
Существует ряд правил, которые необходимо выполнять в любом случае, если решили проводить эти работы:- Используемый компьютер для осциллографа обязательно нужно заземлить.
- Нельзя подключать заземление к розетке. Оно подсоединяется через специальный корпус линейного входного разъема с корпусом системного блока. В данном случае, независимо, попадаете ли вы в фазу или ноль, у вас не будет замыкания.
Говоря иначе, в розетку может подсоединяться только провод, который соединяется с резистором, и находится в схеме адаптера с номинальным значением один мегом. Если же вы попробуете включить в сеть провод, который контактирует с корпусом, то почти во всех случаях это обязательно приведет к самым плачевным последствиям.
Изготовление осциллографа в домашних условиях из планшета или ноутбука
Устройство с дисплеем на базе электронно-лучевой трубки, предназначенное для изучения параметров времени и амплитуды электрического сигнала, называется осциллографом. Подача сигнала осуществляется на вход устройства, результат записывается на фотоленту или выводится на экран. Оно возглавляет топ самых необходимых приборов, используемых для настройки и регулировки электронных схем.
Как выглядит осциллограф
Осциллограф и его функции
Это электронный прибор, на экране которого наблюдают за формой сигнала. В процессе работы доступен ряд опций:
- фиксирование мгновенных характеристик;
- аналогия фазовых смещений и форм сигналов с иными импульсами;
- контроль и мониторинг синусоидальных, треугольных и прямоугольных колебаний;
- развёртка импульса для измерения времени нарастания.
Классифицировать приборы возможно по следующим показателям:
- особенности работы и предназначение;
- количество сигналов, просматриваемых разом;
- способ обработки информации;
- вид воспроизводящего устройства.
По особенности работы подразделяются на модели: скоростные, стробоскопические, универсальные, запоминающие и специальные. Количество одновременно подающихся сигналов – один, два и более.
Важно! Многоканальные n-осциллографы высвечивают на экран n-графиков, считывая показания с n-го количества сигнальных входов.
Аналоговые и цифровые устройства делят между собой методы обрабатывания полученной информации. Узлы отображения сигналов представлены электронно-лучевыми трубками «ЭЛТ» или матричными панелями.
Схема простого осциллографа
Чтобы понять, как устроен прибор, изучают стандартную блок-схему.
Блок-схема осциллографа
В формировании сигнала на экране участвуют два вида отклонения луча: по вертикали и горизонтали. Пользуясь системой координат, эти развёртки обозначили как: Y и Х.
В блоке развёртки по вертикали выполняется обработка сигнала, подающегося в канал через аттенюатор. Он ступенчато регулирует амплитуду исследуемых величин, не допуская превышения должного уровня. Это удерживает изображение в границах дисплея.
Для синхронизации работы узла задающего генератора Х – отклонения с канала вертикальной развёртки на него подаётся сигнал. По умолчанию канал Y работает в открытом режиме. Отклонение луча по вертикали в этом случае в точности совпадает с уровнем сигнала. Помеха постоянной составляющей, при её наличии, будет смещать картинку или же загонять за границы дисплея. Это сильно мешает работе и требует постоянной подстройки ступенчатого регулятора.
Использование режима закрытого входа помогает этого избежать. Закрытый видеовход подразумевает включение конденсатора между ним и схемой. Конденсатор играет роль ёмкостного фильтра для постоянной составляющей входного сигнала.
Канал горизонтальной развёртки (X) подсоединяется к генератору. Тот выдаёт команды для отклонения луча ЭЛТ по горизонтали и действует в четырёх позициях:
- Режим внутренней синхронизации. Применяется для обработки сигнала, имеющего постоянную частоту. Возможна работа в режиме автоколебаний, где частота выставляется вручную. Выполняются захват частоты сразу после входа и повышение стабильности картинки.
- Режим внешней синхронизации, когда выполняется пуск генератора от входящего импульса. Актуален, когда синхронизация осуществляется от входа Y, по которому подаётся испытуемый сигнал. Команда запуска выполняется по фронту или спаду всплеска, а также по команде источника внешних пульсаций. Такой регламент работы удобен для рассмотрения нестабильных колебаний.
- Обеспечение синхронизации от сети питания 220 В, 50 Гц. Используется при определении искажений и помех от источников питания. Запуск блока происходит одновременно с импульсами напряжения сети.
- Однократный ручной пуск применим для слежения за сигналами логических схем непериодической природы. Чтобы снова включить генератор, его опять «взводят».
К сведению. Окончательное формирование уровней сигналов двух развёрток выполняют оконечные усилители.
Одноканальная модель
Такой прибор имеет один вход – один луч. Структурное строение показано на рис. выше. В состав схемы входят:
- экран – ЭЛТ;
- блок Y-развёртки: аттенюатор, предварительный усилитель, цепь задержки, начальное усиление синхронизации и оконечный усилитель выхода;
- блок Х-развёртки: устройство синхронизации, узел развёртки, выходной усилитель;
- схема усиления подсветки;
- калибратор;
- сетевой блок питания.
В таком приборе сигнал мониторинга подаётся на один вход и отображается движением луча на экране. Этого хватает для проведения измерений ряда параметров.
Двухканальные устройства
Когда требуется сравнить два вида сигнала, применяют такие приборы.
- Двухканальные – для наблюдения импульсов с идентичных Y-каналов. Переключая тумблером, поочерёдно подают выходные сигналы на пластины ЭЛТ. Наблюдают отдельно каждый сигнал входов Y1-Y2 или совместно. Второй – при каждом обратном ходе развёртки.
- Двухлучевые – у них в наличии два отдельных Y-канала и двухлучевое исполнение ЭЛТ. У такого прибора совместный запуск генератора горизонтальной развёртки, включение вертикальной развёртки происходит для каждого канала отдельно. Это разрешает видеть 2 осциллограммы одновременно.
Многоканальные модификации
Современные аппараты выполняют мониторинг импульсов по нескольким каналам. Различают входы: аналоговые, цифровые или смешанные. Модели со смешанными каналами обрабатывают оба вида сигнала с выводом картинки на монитор.
Цифровой многоканальный осциллограф
Сборка устройства на 5 В
Полноценный цифровой прибор этой линейки без собственного дисплея называется USB oscilloscope. Продаются наборы комплектующих материалов для изучения работы с подобными устройствами. В комплект входят:
- прибор;
- кабель питания юсб;
- 2 щупа с «крокодилами»;
- программный продукт на диске.
Подключается к ПК через шнур USB. Собранный из набора измеритель подойдёт для приобретения начальных навыков. В самодельных схемах такая приставка собирается на микросхеме ММР20.
Осциллографы на 10 В
В схемах с подобным напряжением применяются резисторы закрытого типа и стабилитрон. Их параметры чувствительности по вертикали подбираются до 2 мВ. При расчёте полосы пропускания максимальное сопротивление устройства согласовывается с ёмкостью проводных конденсаторов. Диоды подбирают с напряжением 2 В, резисторы желательно выбирать полевые. Выбор диодов на такое напряжение позволит снизить частоту дискретизации до минимума и увеличить скорость передачи. Из-за быстрой развёртки данных предельная частота резко падает. Использование стабилитрона или делителя, выполненного из модулятора, поможет решить эту проблему.
Схема на 10 В
Как сделать модель на 15 В
При сборке используют линейные резисторы, сопротивление которых на уровне предела – 5 Мом. Это разрешает стабилитрону работать в щадящем режиме. При выборе конденсаторов предварительно тестером измеряется пороговое напряжение.
Внимание! Полученные результаты тестирования, при использовании для прибора настроечных резисторов, бывают неточными. Использовать подобает линейные резисторы.
При сборке не забывают смонтировать порт, присоединяемый через щуп к микросхеме, при этом через шину подключают делитель. Использование вакуумных диодов в сборке позволит контролировать уровень амплитуды колебаний.
Осциллограф на 15 В
Использование резисторов серии ППР1
Приборы, в состав которых входят элементы этой линейки, весьма популярны. Благодаря высокой чувствительности, применяются для мониторинга электроаппаратуры. Для создания этого измерителя потребуются ЭЛТ, импульсный модулятор, выпрямитель и контакторы с обкладками. Установка кенотрона оправдана точностью полученных показаний. Устройство оперативного типа требует установки контроллера.
Величина сопротивления не выше 34 Ома, а проводимость сигнала с коэффициентом 4,2-4,5 Ом. Через модулятор низкой проводимости выполняют подключение USB-порта. Спектральные расширители для схемы берутся импульсного типа.
Важно! Необходимо организовать стабилизацию напряжения, расширитель закрепить рядом с компаратором, который уменьшит тепловые потери.
Модели с резисторами ППР3
Выполнить сборку схемы с этими резисторами допустимо с применением сеточных конденсаторов. Сопротивление ёмкостной цепи Rц возможно до 4 Ом. В сборку на микросхеме ММР20 устанавливают не менее 3 шт. Важно делать проверку проводимости ППР3 до включения схемы.
Устройства с подавлением колебаний
Определение зашумленности сигнала и подавление выполняет отдельный узел. Схемы, включающие в себе такой блок, имеют значения предельной частоты не выше 4 Гц. В этом случае используются аналоговые диоды и микросборки сеточного типа.
Сборка карманного осциллографа на основе «андроида»
Если частота, подлежащая измерениям, лежит в диапазоне 20 кГц (звук слышимости ухом), то используют наушники с микрофоном. Чтобы собрать новый прибор на основе ОС «Андроид», можно обойтись без дополнительных узлов. Из гарнитуры берётся разъём 3,5 мм. К микрофонным контактам припаиваются щупы. Между ними и штекером вставляется коммутатор пределов измерения. Скачивают на телефон приложение «Осциллограф». Сигнал, поступающий на вход микрофона, будет отображаться на экране.
Схема коммутатора пределов измерения
Плюсы и минусы «андроидной» сборки
Недостатков в таком методе больше, чем плюсов. Минусы:
- не даёт точности измерений;
- разрешает мерить только высокочастотные сигналы;
- нельзя померить переходные процессы при постоянном напряжении;
- подвергается опасности вход гаджета.
Плюсов мало:
- 20 минут времени на монтаж;
- сборка несложная.
Трудно назвать эту приставку хорошим измерительным прибором.
Сборка осциллографа из планшета
Смонтировать осциллограф из ноутбука или планшета возможно с помощью приставки Hantek-6022BE-2-20-USB-PC. Планшет используется как монитор. Управление измерениями командой – с экрана или «мышкой».
Приставка Hantek
Программное обеспечение для осциллографа на планшете и андроиде
Если usb осциллограф из звуковой карты изготовлен своими руками, скачивается ПО. Программу качают на «Плей Маркете» или других аналогичных сайтах для скачивания приложений. Подобные программы позволяют не только добиться точности измерений для планшета, но и выполнять нужную калибровку сигнала.
Широкодиапазонная частота с помощью отдельного гаджета
Расширить частотный диапазон позволит применение отдельного устройства. Оно включает в себя преобразователь аналога в цифру. Дальнейшая подача импульсов происходит в цифровом формате. Точность измерений повышается. Выпускается в виде портативного прибора с дисплеем.
Осциллограф из планшета на «Андроид»
При приобретении приставки-осциллографа выбирается ОС не «виндовс», а «андроид». Приставка должна поддерживать опции:
- вluetooth-канал;
- передача данных с помощью Wi-Fi.
Это позволит обойтись без контактной привязки гаджета с приставкой.
Bluetooth-канал
У подключения через Bluetooth присутствуют ограничения:
- у тестируемой частоты граница – 1 МГц;
- U щупа = 10 В;
- зона покрытия – 10 м.
Это ограничивает ресурс при применении подключений такого типа.
Передача данных с помощью Wi-Fi
Подключить осциллограф из планшета фирмы Linux или иного производителя допустимо посредством беспроводной сети – wi fi канала. Пакет измерений выдаётся на планшет без промедления и для неограниченного количества участников проекта. Наличие опции записи позволяет работать с информацией в версиях офлайн и онлайн. Дальность соединения выше, чем у Bluetooth.
USB осциллограф своими руками схема
Используя источник 5 В и подключение через шнур usb, можно самостоятельно собрать такую схему.
Схем USB осциллографа
Создание подобных приборов самостоятельно оправдано при измерениях, не требующих точных результатов. Подход к решению вопроса – это использование уже готовой полноценной приставки.
Осциллограф приставка к компьютеру. Как сделать своими руками осциллограф из ноутбука. Самые интересные ролики на Youtube
Решили мы как-то взять осциллограф другу. Долго думали… Выложить за советскую Цешку тысяч 5-10, либо поднакопить на нормальный фаршированный , который сейчас у меня стоит на
На Авите советские осциллографы стоят почему-то до сих пор очень дорого, а цифровой осциллограф стоит и того дороже. И тут мы подумали: «А почему бы не взять USB осциллограф с Алиэкспресса?» Цена — копейки, функционал почти тот же самый, что и у цифрового осциллографа, да и габариты небольшие. USB осциллограф по сути тоже является цифровым осциллографом, но только с одним отличием — у него нет собственного дисплея.
Почесали репу, пораскинули мозгами… Кризис — надолго. Доллар дешеветь не собирается. Самые лучшие инвестиции — это в приборы и в образование. Ну что же, сказано — сделано. Спустя месяц с лишним пришел вот такой USB осциллограф:
В придачу с ним шли 2 щупа, шнур USB, расходники, диск с ПО, а также отвертка для регулировки щупов
С одной стороны осциллографа мы видим два BNC разъема для подключения щупов, а справа видим два штыря. Эти штыри — генератор тестового сигнала для калибровки щупов осциллографа. Один из них земля, а другой — сигнальный.
Как мы видим на фото, максимальное напряжение, которое мы можем подавать на разъемы BNC — это 30 Вольт, что вполне хватит для начинающего электронщика. Генератор тестового сигнала выдает нам прямоугольный сигнал меандр с частотой в 1 Килогерц и размахом в 2 Вольта.
С другой стороны можно увидеть сигнальный светодиод, сигнализирующий о работе осциллографа, а также вход для USB кабеля, который другим концом цепляется к ПК
В рабочем состоянии все это выглядит как-то так:
Работа осциллографа
После установки программного обеспечения, которое шло на диске, цепляем наш осциллограф. Начинается установка драйверов. Потом запускаем программу. Интерфейс программы проще пареной репки:
Слева само рабочее поле, а справа горизонтальная и вертикальная развертка для первого и второго канала. Есть также волшебная кнопка «AUTO», которая выдает нам уже готовый сигнал на дисплее.
Далее нажимаем на «Ch2», что означает «первый канал», так как я подцепился к разъему первого канала. Цепляем щуп к тестовым штырям и подготавливаем осциллограф к работе. Крутим винтик на щупе и добиваемся того, чтобы осциллограмма тестового сигнала была строго прямоугольной
Должно получиться как-то так:
На всех цифровых осциллографах это делается одинаково. Как это сделать, можно прочитать .
Также можно вывести параметры, которые осциллограф сразу бы показывал на мониторе. Это частота, период, среднее значение, среднеквадратичное, напряжение от пика до пика и тд. Про эти параметры можно прочитать в этой статье.
Частота дискретизации
Частота дискретизации — это грубо говоря, с какой частотой осциллограф записывает сигнал. Как вы знаете, осциллограмма — это кривая или прямая линия. Чаще всего кривая. Помните, как на алгебре чертили параболу графика y=x 2 ? Если мы брали 3-4 точки, то у нас график получался с изломами (в красных кружочках)
А если бы брали больше точек, то и график собственно получался правильнее и красивее:
Здесь все то же самое! Только по Х у нас откладывается время, а по Y — напряжение.
Следовательно, чтобы сигнал как можно точнее отображался на дисплее, нужно чтобы этих точек было как можно больше. И чем больше точек, тем лучше и правильнее отображается форма сигнала. В этом плане абсолютную победу одерживают .
Для того, чтобы было как можно больше точек, частота дискретизации должна быть как можно больше. Также частоту дискретизации чаще всего называют частотой сэмплирования . Sample с англ. — выборка. На каждом цифровом осциллографе эта частота сэмплирования указывается прямо на его корпусе. Указывается она в МегаСэмплах, что значит миллион сэмплов. У этого USB осциллографа максимальная частота сэмплирования составляет 48 МегаСэмплов в секунду (48MSa/s) Это означает, что за 1 секунду сигнал прорисовывается (состоит) из 48 миллионов точек. Вот теперь скажите мне, у какого осциллографа будет самый правильный сигнал? У с частотой дискретизации в 500 МSa/s или у нашего героя статьи в 48MSa/s ? То-то же)
Полоса пропускания
Полоса пропускания — это максимальная частота, после которой осциллограф начинает показывать искажение сигнала. На данном USB осциллографе заявленная полоса пропускания равняется 20 Мегагерц. Если мы будем замерять сигналы более, чем за 20 Мегагерц, то у нас сигналы будут искажаться по ам
Осциллограф из ноутбука. Осциллограф из планшета своими руками
На интернет-страничке http://www.semifluid.com я нашел весьма простое решение для создания цифрового компьютерного осциллографа. Устройство построено на базе восьмиразрядного процессора PIC12F675.
Процессор работает на частоте 20 МГц. Микроконтроллер непрерывно измеряет входное напряжение, преобразовывает его и отправляет цифровое значение на последовательный порт компьютера. Скорость передачи данных последовательного порта – 115кБит и, как показано на следующем рисунке, данные сканируются и отправляются с частотой около 7,5 кГц (134 мкс).
Cхема устройства
Основа схемы, микроконтроллер PIC12F675 (микросхема U2) который работает с тактовой частотой 20 МГц кристалла Y1. J1 — стандартный разъем питания для подключения питания в 9-12 В, которое затем стабилизируется на U1 до 5 В для питания процессора.
После U2 в схему добавляется простой преобразователь TTL уровня с последовательным портом RS232 персонального компьютера. Он построен на базе транзистора BC337 (Q1) и резисторов R1 и R3. Вход 5 микроконтроллера ведет к переключателю S1. В своей основной позиции (1-2) прибор переключается в режим осциллографа постоянного тока (DC измерений), который способен отображать входной сигнал 0-5В. Во второй позиции — в режим осциллографа переменного тока. В этом положении максимальное напряжение – от -2,5 до +2,5 В. Конденсатор С6 я использовал керамический 22000nF, чтобы наблюдать низкие частоты без особых искажений.
При необходимости можно добавить дополнительные входной аттенюатор (сплиттер), или ОУ.
Программное обеспечение
В упомянутом выше оригинальном сайте, также доступна простая программа управления для Windows. Программа написана на Visual Basic.
Программа запускается сразу и ожидает появление данных на последовательном порте COM1. Слева, четыре ползунка, используемые для измерения периода и напряжения сигнала. Затем идут вкл / выкл синхронизации, поля для масштабирования или изменения значений размера выборки.
Монтаж
Я не стал делать печатной платы, а смонтировал все в небольшой пластиковой коробке навесным монтажом. Корпус должен иметь отверстия для разъема RS232 переключателя, входного гнезда, гнезда питания.
Прошивка для процессора — в конце статьи. Биты конфигурации (fuse), в процессе программирования должны быть установлены следующим образом:
Фотография моего готового прототипа
Ниже вы можете скачать исходник, прошивку и ПО для windows
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
U1 | Линейный регулятор | LM78L05 | 1 | Поиск в Чип и Дип | В блокнот | |
U2 | МК PIC 8-бит | PIC12F675 | 1 | 675-I/P | Поиск в Чип и Дип | В блокнот |
Q1 | Биполярный транзистор | BC337 | 1 | Поиск в Чип и Дип | В блокнот | |
С1, С2, С5 | Конденсатор | 0.1 мкФ | 3 | Поиск в Чип и Дип | В блокнот | |
С3, С4 | Конденсатор | 22 пФ | 2 | Поиск в Чип и Дип | В блокнот | |
С6 | Конденсатор | 22 мкФ | 1 | Поиск в Чип и Дип | В блокнот | |
R1, R3 | Резистор | 1 кОм | 2 |
Ниже представлен проект USB-осциллографа, который вы сможете собрать своими руками. Возможности USB-осциллографа минимальны, но для многих радиолюбительских задач вполне сойдет. Также, схема данного USB-осциллографа может использоваться как основа для построения более серьезных схем. В основе схемы стоит микроконтроллер Atmel Tiny45.
Осциллограф имеет два аналоговых входа и питается от USB-интерфейса. Один вход задействован через потенциометр, что позволяет уменьшать уровень входного сигнала.
ПО для микроконтроллера tiny45 написано на Си и скомпилировано при помощи и V-USB разработки Obdev , который реализует со стороны микроконтроллера HID-устройства.
В схеме не используется внешний кварц, а программно задействована частота от USB 16.5 МГц. Естественно не стоит ожидать от этой схемы дискретизации 1Gs/s.
Осциллограф работает по USB через HID-режим, не требующий установки каких-либо специальных драйверов. Софт для windows написан с использованием.NET C#. Взяв за основу мой исходник программы, вы можете дополнить ПО как вам нужно.
Принципиальная схема USB-осциллографа очень проста!
Список используемых радиоэлементов:
1 светодиод (любой)
1 резистор для светодиода, от 220 до 470 Ом
2 резистора 68 Ом для USB D+ & D-линий
1 резистор 1.5K для определения USB-устройства
2 стабилитрона 3.6V для выравнивания USB-уровней
2 конденсатора 100нФ и 47мкФ
2 фильтрующих конденсатора на аналоговых входах (от 10нФ до 470нФ), можно и без них
1 или 2 потенциометра на аналоговых входах, для уменьшения уровня входного напряжения (если нужно)
1 USB-разъем
1 микроконтроллер Atmel Tiny45-20.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
МК AVR 8-бит | ATtiny45 | 1 | Поиск в Чип и Дип | В блокнот | ||
D1, D2 | Стабилитрон | BZX84C3V6 | 2 | 3.6В | Поиск в Чип и Дип | В блокнот |
С1, С3, С4 | Конденсатор | 100 нФ | 3 | Поиск в Чип и Дип | В блокнот | |
С2 | Электролитический конденсатор | 47 мкФ | 1 | Поиск в Чип и Дип | В блокнот | |
R1, R5 | Резистор | 68 Ом | 2 | Поиск в Чип и Дип | В блокнот | |
R2 | Резистор | 330 Ом | 1 | Поиск в Чип и Дип | В блокнот | |
R3 | Резистор | 2.2 кОм | 1 |
В наше время использование различных измерительных устройств, построенных на базе взаимодействия с персональным компьютером, достаточно много. Значительным преимуществом их использования является возможность сохранения полученных значений достаточно большого объема в памяти устройства, с последующим их анализом.
Цифровой USB осциллограф из компьютера , описание которого мы приводим в данной статье, является одним из вариантов подобных измерительных инструментов радиолюбителя. Его можно применить в качестве осциллографа и устройства записывающего электрические сигналы в оперативную память и на жесткий диск ком
Осциллограф из планшета своими руками. Как сделать осциллограф из компьютера своими руками
Не секрет, что у начинающих радиолюбителей не всегда есть под рукой дорогое измерительное оборудование. К примеру осциллограф, который даже на китайском рынке, самая дешевая модель стоит порядка нескольких тысяч.
Бывает осциллограф нужен для ремонта различных схем, проверка искажений усилителя, настройки звуковой техники и т.п. Очень часто низкочастотный осциллограф используется при диагностике работы датчиков в автомобиле.
В этом ряде случаем вам поможет наипростейший осциллограф, сделанный из вашего персонального компьютера. Нет, ваш компьютер никак не придется разбирать и дорабатывать. Вам понадобится всего на всего спаять приставку – делитель, и подключить её к ПК через звуковой вход. А для отображения сигнала установить специальный софт. Вот за пару десятков минут у вас появится собственный осциллограф, который вполне может сгодится для анализа сигналов. Кстати можно использовать не только стационарный ПК, но и ноутбук или нетбук.
Конечно, такой осциллограф с большой натяжкой сравним с настоящим прибором, так как имеет маленький диапазон частот, но вещь в хозяйстве очень полезная, чтобы посмотреть выхода усилителя, различные пульсации источников питания и тп.
Схема приставки
Согласитесь, что схема невероятна проста и не потребует много времени для её сборки. Это делитель — ограничитель, который защитит звуковую карту вашего компьютера от опасного напряжения, которое вы можете случайно падать на вход. Делитель может быть на 1, на 10 и на 100. Переменным резистором регулируется чувствительность всей схемы. Подключается приставка к линейному входу звуковой карты ПК.Собираем приставку
Можно взять бокс от батареек как я или другой пластиковый корпус.Программное обеспечение
Программа «осциллограф» будет визуализировать сигнал, поданный на вход звуковой карты. Я предложу вам на скачивание два варианта:1) Простая программа без установки с русским интерфейсом, качаем.
(cкачиваний: 7523)
2) И вторая с установкой, скачать её можно – .
Какой пользоваться – выбирать вам. Возьмите и установите обе, а там выберете.
Если у вас уже установлен микрофон, то после установки и запуска программы можно уже будет наблюдать звуковые волны, которые поступают в микрофон. Значит все хорошо.
Для приставки никаких драйверов больше не потребуется.
Подключаем приставку ко линейному или микрофонному входу звуковой карты и пользуемся на здоровье.
Если у вас никогда в жизни не было опыта работы с осциллографом, то я искренне рекомендую вам повторить эту самоделку и поработать с таким виртуальным прибором. Опыт очень ценный и интересны.
Digital Oscilloscope V3.0 – популярная радиолюбительская программа, которая превратит ваш компьютер в виртуальный осциллограф
Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “
Сегодня на
Как сделать из монитора осциллограф. Как сделать своими руками осциллограф из ноутбука. Что нужно учесть
Сегодня часто вместо того, чтобы сделать, например, осциллограф из компьютера, большинство людей предпочитают просто приобрести USB-осциллоскоп. Но, пройдясь по магазинам, можно увидеть, что цена бюджетных осциллографов начинается от 200 долларов. А серьезная аппаратура и вовсе стоит в разы дороже. Именно тем людям, которых не устраивает эта цена, проще всего сделать осциллограф из ноутбука или компьютера своими руками.
Что необходимо использовать
Самая оптимальная сегодня – это программа Osci , она имеет интерфейс, похожий на классический осциллограф: на мониторе находится стандартная сетка, с помощью которой вы сможете сами померить амплитуду или длительность.
Из недостатков этой программы можно выделить то, что она работает немного нестабильно. Во время работы утилита может иногда зависать, а чтобы затем ее сбросить, надо использовать специализированный TaskManager. Но все это компенсируется тем, что программа имеет привычный интерфейс, и довольно удобна в использовании, а также имеет большое количество функций, они дают возможность сделать полноценно работающий осциллограф из компьютера или ноутбука.
На заметку
Нужно сказать, что в комплекте данных программ есть специальный низкочастотный генератор , но его использование нежелательно, он пытается полностью сам контролировать работу драйвера звуковой карты, что провоцирует выключение звука. Если решили его опробовать, позаботьтесь, чтобы у вас была точка восстановления либо сделайте бэкап вашей ОС. Самым оптимальным способом, как сделать своими руками из компьютера осциллограф, будет скачивание рабочего генератора.
«Авангард»
Это отечественная программа, она не имеет привычной и стандартной измерительной сетки, и отличается очень большим экраном для фотографирования скриншотов, но в то же время позволяет использовать установленный частотомер и вольтметр амплитудных значений. Это частично компенсирует недостатки, указанные выше.
Сделав этот осциллограф из компьютера, вы столкнетесь со следующим: на небольших уровнях показателей вольтметр и частотомер могут значительно искажать данные, но для новичков-радиолюбителей, эта утилита будет вполне достаточной. Еще одной полезной функцией будет то, что можно делать абсолютно независимую калибровку двух уже находящихся шкал установленного вольтметра.
Как это использовать
Из-за того, что входные цепи звуковой карты имеют специальный разделительный конденсатор, то компьютер в роли осциллографа может работать только с закрытым входом . Таким образом, на мониторе будет видна лишь переменная составляющая показателей, но, имея определенную сноровку, с помощью этих программ можно сделать измерение показателя постоянной составляющей. Это очень актуально в случае, когда, к примеру, время отсчета мультиметра не дает возможности зафиксировать некоторое значение амплитуды напряжения на конденсаторе, заряжающегося с помощью крупного резистора.
Нижнее значение напряжения ограничивается уровнем фона и шума и имеет примерно 1 мВ. Верхний предел ограничивается лишь по показателям делителя и достигает более сотни вольт. Частотный диапазон ограничивается самой возможностью звуковой карты и для старых компьютеров составляет около 20 кГц .
Естественно, в этом случае рассматривается довольно примитивное устройство. Но когда у вас нет возможности, например, использовать USB-осциллограф, то в данном случае его использование вполне приемлемо. Этот прибор поможет вам в ремонте разной аудиоаппаратуры, или может быть использован для учебных целей. Кроме того, программа-осциллограф даст возможность вам сохранить эпюру для иллюстрации материала или для размещения в сети.
Электрическая схема
Если вам необходим приставка к компьютеру, то сделать осциллограф будет гораздо сложнее. Сегодня в интернете можно отыскать довольно большое количество разных схем этих устройств, и для изготовления, например, двухканального осциллографа вам будет необходимо только их продублировать. Второй канал зачастую актуален в случае, когда надо сравнивать два сигнала или же осциллограф используется для подключения внешней синхронизации .
Как правило, схемы очень простые, но так, вы самостоятельно обеспечите очень большой диапазон доступных измерений, используя минимум радиодеталей. Причем аттенюатор, который изготавливается по классической схеме, потребовал бы от вас наличие узкоспециализированных высокомегаомных резисторов, а его сопротивление на входе все время менялось при переключении диапазона. Поэтому вы бы испытывали некоторые ограничения при использовании обычных осциллографических проводов, рассчитанных на импеданс входа не больше 1 мОм.
Как выбрать резисторы делителя напряжения
Из-за того, что зачастую радиолюбители испытывают сложности с тем, чтобы подобрать прецизионные резисторы, часто бывает так, что приходится выбирать устройства широкого профиля, которые надо максимально точно подогнать , иначе сделать своими руками осциллограф из компьютера не получится.
Подстроечные резисторы делителя напряжения
В этом случае каждое плечо делителя имеет два резистора, один является постоянным, второй – подстроечный. Минус этого варианта, это его громоздкость, но точность ограничивается лишь тем, какие доступные характеристики имеет измерительный аппарат.
Как выбрать обычные резисторы
Еще один вариант сделать осциллограф из компьютера – это выбрать пары резисторов. Точность в этом случае обеспечивается благодаря тому, что используются пары из двух комплектов с довольно приличным разбросом. Тут важно изначально выполнить тщательные замеры всех устройств, а после подобрать пары, суммарное сопротивление которых будет самым подходящим для вашей схемы.
Сегодня подгонка резисторов с помощью удаления части пленки часто используется даже в современной промышленности, то есть так, нередко делается осциллограф из компьютера.
Но нужно сказать, что если вы хотите подгонять высокоомные резисторы, то резистивная пленка не должна быть разрезана насквозь. Так как в этих устройствах она находится на цилиндрической поверхности в виде спирали, потому делать подпил надо предельно аккуратно, чтобы не допустить разрыва цепи . Затем:
После, когда резистор полностью подогнан, место пропила покрывают слоем специального защитного лака.
Сегодня этот способ наиболее быстрый и простой, но при этом дает хорошие результаты, что и сделало его оптимальным для домашних условий.
Что нужно учесть
Существует ряд правил, которые необходимо выполнять в любом случае, если решили проводить эти работы:
- Используемый компьютер для осциллографа обязательно нужно заземлить.
- Нельзя подключать заземление к розетке. Оно подсоединяется через специальный корпус линейного входного разъема с корпусом системного блока. В данном случае, независимо, попадаете ли вы в фазу или ноль, у вас не будет замыкания.
Говоря иначе, в розетку может подсоединяться только провод, который соединяется с резистором , и находится в схеме адаптера с номинальным значением один мегом. Если же вы попробуете включить в сеть провод, который контактирует с корпусом, то почти во всех случаях это обязательно приведет к самым плачевным последствиям.
Рассказать в:Начинающим радиолюбителям посвящается!
О том, как собрать самый простой адаптер для программного виртуального осциллографа, пригодный для использования в ремонте и настройке аудиоаппаратуры.
О виртуальных осцилл
Как сделать осциллограф из ноутбука
Ниже представлен проект USB-осциллографа, который вы сможете собрать своими руками. Возможности USB-осциллографа минимальны, но для многих радиолюбительских задач вполне сойдет. Также, схема данного USB-осциллографа может использоваться как основа для построения более серьезных схем. В основе схемы стоит микроконтроллер Atmel Tiny45.
Осциллограф имеет два аналоговых входа и питается от USB-интерфейса. Один вход задействован через потенциометр, что позволяет уменьшать уровень входного сигнала.
ПО для микроконтроллера tiny45 написано на Си и скомпилировано при помощи WinAVR и V-USB разработки Obdev, который реализует со стороны микроконтроллера HID-устройства.
В схеме не используется внешний кварц, а программно задействована частота от USB 16.5 МГц. Естественно не стоит ожидать от этой схемы дискретизации 1Gs/s.
Осциллограф работает по USB через HID-режим, не требующий установки каких-либо специальных драйверов. Софт для windows написан с использованием .NET C#. Взяв за основу мой исходник программы, вы можете дополнить ПО как вам нужно.
Принципиальная схема USB-осциллографа очень проста!
Список используемых радиоэлементов:
1 светодиод (любой)
1 резистор для светодиода, от 220 до 470 Ом
2 резистора 68 Ом для USB D+ & D-линий
1 резистор 1.5K для определения USB-устройства
2 стабилитрона 3.6V для выравнивания USB-уровней
2 конденсатора 100нФ и 47мкФ
2 фильтрующих конденсатора на аналоговых входах (от 10нФ до 470нФ), можно и без них
1 или 2 потенциометра на аналоговых входах, для уменьшения уровня входного напряжения (если нужно)
1 USB-разъем
1 микроконтроллер Atmel Tiny45-20.
В архиве содержатся файлы печатной платы под Eagle, прошивка, исходники на Си включающие USB-библиотеки и HID, программа для windows (не требует установки) и ее исходник на C#.
Виртуальный осциллограф РадиоМастер позволяет исследовать переменные напряжения в звуковом диапазоне частот : от 30..50 Гц до 10..20 Кгц по двум каналам с амплитудой от нескольких милливольт до десятков вольт. Перед реальным осциллографом такой прибор имеет преимущества: он позволяет легко определять амплитуду сигналов, запоминать осциллограммы в графических файлах. Недостатком прибора является невозможность увидеть и измерить постоянную составляющую сигналов.
На панели прибора располагаются органы управления, типичные для реальных осциллографов, а также специальные средства настройки и кнопки для работы в режиме запоминания осциллограмм. Все элементы панели снабжены всплывающими комментариями, и Вы легко с ними разберетесь. В скобках комментариев указаны клавиши, дублирующие экранные органы управления.
Специально остановимся лишь на операции калибровки по Y (по напряжению), которую следует произвести после подключения изготовленного Вами кабеля. Подайте на оба входа прибора сигнал известной амплитуды от общего источника (предпочтительно синусоидальной формы с частотой 500..2000 Гц и амплитудой несколько ниже расчетного предела), введите известное значение амплитуды в милливольтах, нажмите Enter, и осциллограф откалиброван. Первоначальная калибровка программы сделана с неким кабелем, соответствующем приведенной схеме.
Программа запоминает все установки и настройки и восстанавливает их при следующем включении.
Характеристики осциллографа в значительной степени зависят от параметров звуковой карты Вашего компьютера. Так со старыми типами карт, у которых частота дискретизации не более 44,1 кГц, частотный диапазон прибора ограничен сверху. Используя имеющийся на панели переключатель частоты дискретизации, опробуйте свою звуковую карту, и остановитесь на наивысшем возможном значении. Уже при 96 кГц можно уверенно рассматривать сигналы до 20 кГц.
Разрядность АЦП установлена равной 16, что обеспечивает достаточно высокую точность.
Диапазон измеряемых осциллографом напряжений определятся резистивными делителями, смонтированными на кабеле (см. схему). При R1 =0 все напряжение поступает на вход АЦП звуковой карты, следовательно можно без искажений рассматривать сигналы амплитудой не более 500..600 мВ. При использовании резисторов указанных на схеме номиналов получается диапазон напряжений до 25 В, что обычно достаточно в любительской практике.
Рекомендуется использовать экранированный провод, и резисторы располагать возможно ближе к разъему звуковой карты компьютера.
Если ваша звуковая карта не имеет линейного входа, используйте вход микрофона, но при этом будет потерян один канал осциллографирования. Не забудьте указать выбранный вход звуковой карты в установках Windows. Соответствующий регулятор громкости установите в положение максимума, регулятор баланса в нейтральное положение.
Современная измерительная аппаратура давно срослась с цифровыми и процессорными средствами управления и обработки информации. Стрелочные указатели уже становятся нонсенсом даже в дешевых бытовых приборах. Аналитическое оборудование все чаще подключается к обычным ПК через специальные платы-адаптеры. Таким образом, используются интерфейсы и возможности программ приложений, которые можно модернизировать и наращивать без замены основных измерительных блоков, плюс вычислительная мощь настольного компьютера.
Кроме того, и расширение возможностей обычного компьютера возможно за счет разнообразных программно-аппаратных средств, — специальных плат расширения, содержащих измерительные АЦП (аналого-цифровой преобразователь) и ЦАП (цифро-аналоговый преобразователь). И компьютер очень легко превращается в аналитический прибор, к примеру, — спектроанализатор, осциллограф, частотомер… , как и во многое другое. Подобные средства для модернизации компьютеров выпускаются многими фирмами. Однако цена и узконаправленная специфика не делают это оборудование распространенным в наших условиях.
Но зачем далеко ходить? Оказывается, простой ПК в своей конструкции уже содержит средства, которые с некоторыми ограничениями способны превратить его в тот же осциллограф, спектроанализатор, частотомер или генератор импульсов. Согласитесь, уже немало. К тому же делаются все эти превращения только с помощью специальных программ, которые к тому же совершенно бесплатны и каждый желающий может их скачать в Интернете.
Вы, наверное, зададитесь логичным вопросом — как же в измерениях можно обойтись без АЦП и ЦАП? Никак нельзя. Но ведь и то и другое присутствует почти в каждом компьютере, правда, называется по другому — звуковая карта. А чем не АЦП/ЦАП, скажите, пожалуйста? Это уже давно поняли те, кто написал для нее массу программ, не имеющих никакого отношения к воспроизведению музыки. Ведь обычная звуковая плата ПК способна воспринимать и преобразовывать сигнал сложной формы в пределах звуковой частоты и амплитудой до 2В в цифровую форму со входа LINE-IN или же с микрофона. Возможно и обратное преобразование, — на выход LINE-OUT (Speakers). Таким образом, вы можете работать с любым сигналом до 20 кГц, а то и выше, в зависимости от звуковой платы. Максимальный предел уровня входного напряжения 0,5-2 В тоже не составляет проблемы, — примитивный делитель напряжения на резисторах собирается и калибруется за 15 минут. Вот на таких-то нехитрых принципах и строятся программное обеспечение: осциллографы, осциллоскопы, спектроанализаторы, частотомеры и, наконец, генераторы импульсов всевозможной формы. Такие программы эмулируют на экране компьютера работу привычных для нас приборов, естественно со своей спецификой и в пределах частотного диапазона вашей звуковой платы.
Как это работает? Для пользователя все выглядит очень просто. Запускаем программу, в большинстве случаев такое ПО не нужно даже инсталлировать. На экране монитора появляется изображение осциллографа: с характерным для этих приборов экраном с координатной сеткой, тут же и панель управления с кнопками, движками и регуляторами, тоже часто копирующими вид и форму таковых с настоящих — аппаратных осциллографов. Кроме того, в программных осциллографах могут присутствовать дополнительные возможности, как, например, возможность сохранения исследуемого спектра в памяти, плавное и автоматическое масштабирование изображения сигнала и т.д. Но, конечно же, есть и свои недостатки.
Как подключиться к звуковой карте? Здесь нет ничего сложного — к гнезду LINE-IN, с помощью соответствующего штекера. Типичная звуковая плата имеет на панельке всего три гнезда: LINE-IN, MIC, LINE-OUT (Speakers), соответственно линейный вход, микрофон, выход для колонок или наушников. Конструкция всех гнезд одинакова, соответственно и штекеры для всех идут одни и те же. Программа осциллограф будет работать и отображать спектр и в том случае если снимается звуковой сигнал с помощью микрофона, подключенного к своему входу. Более того, большинство программных осциллографов, спектроанализаторов и частотомеров нормально функционируют, если в это же время на выход звуковой платы LINE-OUT выводится какой-то другой сигнал с помощью другой программы, пусть даже музыка. Таким образом, на одном и том же компьютере можно задавать сигнал, скажем с помощью программы генератора, и тут же его контролировать осциллографом или анализатором спектра.
При подключении сигнала к звуковой плате следует соблюдать некоторые предосторожности, не допуская превышения амплитуды выше 2 В, что чревато последствиями, такими как выходом устройства из строя. Хотя для корректных измерений уровень сигнала должен быть гораздо ниже от максимально допустимого значения, что так же определяется типом звуковой карты. Например, при использовании популярной недорогой платы на чипе Yamaha 724 нормально воспринимается сигнал с амплитудой не выше 0,5 В, при превышении этого значения пики сигнала на осциллографе ПК выглядят обрезанными (рис.1). Поэтому для согласования подаваемого сигнала со входом звуковой карты потребуется собрать простой делитель напряжения (рис.2).