Регулятор мощности своими руками — 90 фото постройки устройств разных типов
Стремление управлять электроприборами, влиять на их производительность привело к появлению диммеров. Наиболее популярный высоко востребованный – симисторный регулятор мощности, который при владении паяльником легко можно собрать своими руками.
Имея в своей конструкции катод и анод, регулятор мощности наиболее эффективно управляет направлением и силой тока, что напрямую отражается на управлении таких важных устройств как паяльник, сети освещения, динамики стереопроигрывателя, работа вентилятора.
Радиолюбители по достоинству оценили возможность разнообразного применения диммеров на основе симисторов. Некоторые вместо них используют реле, пускатели, контакторы, что в принципе, можно делать. Но преимущества в долговечности, прочности, в отсутствии искрения отодвигают все вышеназванные устройства на второй план.
Проанализировав схемы, в которых используется такая разновидность тиристоров, было выявлено, что их использование гораздо дешевле обходится, чем транзисторный сборки и микросхемы.
Краткое содержимое статьи:
Варианты монтажа
Схемы сборки регулятора мощности могут быть как простыми, так и сложными.
Понадобится:
- Коробка под диммер;
- Печатная плата;
- Радиодетали для сборки схемы;
- Паяльник;
- Припой;
- Флюс;
- Пинцет.
Корпус можно изготовить из пластика, вырезав заготовки и склеив коробку или подобрать по размеру платы, используя старое зарядное устройство, тройник, одинарную или двойную внешнюю розетку и прочее.
Важно, чтобы вся микросхема поместилась в нем и прибором было удобно работать. Подбор корпуса зависит как от мощности, так и задач регулятора напряжения.
Если диммер изготавливается под паяльник, то можно его вмонтировать в заранее приобретенную подставку для паяльника. Когда нужно регулировать мощность лампы накаливания или скорость вращения вентилятора, то его нужно разместить так, чтобы им было удобно пользоваться. Лучше установить в корпус устройства, когда внутри его есть место, или жестко прикрепить к нему.
Простой вариант монтажа регулятора мощности своими руками
Существуют различные варианты сборки диммеров. Отличия – в полупроводниках (тиристорах и симмисторах), регулирующих интенсивность подачи силы тока.
Когда в схеме присутствует микроконтроллер управление диммером – намного точнее. Таким образом, можно собрать простой регулятор мощности на тиристоре или симисторе своими руками.
Между этими полупроводниками есть отличия.
- Тиристор – позволяет течь току однонаправленно. При реверсе или отсутствии подачи напряжения он просто закрывается, работает как простой микровыключатель, точнее – пускатель. Только в отличие от последнего, не искрит и имеет более стабильные характеристики.
- Симистор – одна из его разновидностей. Проводит ток в любом направлении. Это 2 тиристора, спаянных вместе в одном корпусе.
Наиболее популярная схема, которую часто можно увидеть на фотографиях – сборка регулятора мощности для паяльника своими руками.
Инструкция как сделать регулятор мощности
Первоначально нам нужно изготовить и подготовить для монтажа печатную плату. Нет необходимости использовать специальные компьютерные программы для этого и распечатывать ее лазерным принтером на специальной бумаге. Схема не так уж сложна, чтобы использовать дорогостоящее оборудование для ее изготовления.
Самый простой путь – самостоятельно сделать печатную плату из куска текстолита в такой последовательности:
Отрезаем нужный размер, обезжириваем и зашкуриваем поверхность. Карандашом создаем контуры схемы, потом обводим их маркером. Производим травление хлористым железом для удаления остатков меди с поверхности платы.
Просверливаем нужные отверстия под концы радиодеталей. Протираем изготовленную плату жидким флюсом (растворенным в спирте канифолем). С помощью тонкого слоя припоя создаем токоведущие дорожки и площадки.
Когда плата готова, впаиваем в нее следующие радиодетали:
- Микроконтроллер;
- Симистор bta16;
- Динистор db3;
- Резистор, на 2 кОм;
- Конденсатор, на 100 нФ;
- Пластина со штырьками.
Также нам понадобится штепсельная вилка, шнур и розетка. И коробка, куда будет помещаться плата с микросхемой.
Монтаж диммера выполняем в такой последовательности:
Откусываем и впаиваем штырьки (4 шт.). Размещаем все детали кроме микроконтроллера. Тщательно пропаиваем. Тщательно зачищаем промежутки между токоведущими дорожками с помощью иглы и щеточки;
В алюминиевом радиаторе просверливаем отверстие. Закрепляем на нем симистор. Наносим термопасту КПТ-8 на поверхность радиатора. Подключаем переменный резистор.
Куском провода замыкаем средний и крайний выводы. К крайним выводам припаиваем провода. Противоположные подсоединяем к плате в соответствующем месте.
Берем розетку с подключенными к ней двумя проводами. Один конец жилы припаиваем к плате. Другой – к сетевому шнуру. Оставшуюся жилу (от вилки) припаиваем к плате. Помещаем всю собранную «начинку» в коробку.
Когда диммер собран, берем в руки мультиомметр и прозваниваем схему. Когда все в порядке, подключаем настольную лампу и вращением ручки на корпусе устройства изменяем ее интенсивность свечения. Ее яркость будет расти и падать в зависимости от направления вращения.
Если лампа ведет себя так, как описано, то регулятор мощности сделан правильно, и его можно использовать по-назначению.
Фото регулятора мощности своими руками
назначение прибора, инструкция по изготовлению устройства своими руками
Регуляторы напряжения нашли широкое применение в быту и промышленности. Многим людям известно такое устройство, как диммер, позволяющий бесступенчато регулировать яркость светильников. Оно и является отличным примером регулятора напряжения 220в. Своими руками такой прибор собрать довольно просто. Безусловно, его можно приобрести в магазине, но себестоимость самодельного изделия окажется значительно ниже.
Назначение и принцип работы
С помощью регуляторов напряжения можно изменять не только яркость свечения ламп накаливания,
Это позволяет получить на выходе различную частоту следования импульсов, амплитуда которых остается неизменной. Однако если параллельно нагрузке в такую схему включить вольтметр, то напряжение также будет изменяться. Дело в том, что прибор просто не успевает точно измерять амплитуду импульсов.
Регуляторы напряжения чаще всего изготовлены на основе полупроводниковых деталей – тиристорах и симисторах. С их помощью изменяется длительность прохождения волны напряжения из сети в нагрузку.
Следует заметить, что регуляторы напряжения будут максимально эффективны при работе с резистивной нагрузкой, например, лампами накаливания. А вот использовать их для подключения к индуктивной нагрузке нецелесообразно. Дело в том, что показатель индуктивного электротока значительно ниже в сравнении с резистивным.
Рекомендации по изготовлению
Собрать самодельный диммер довольно просто. Для этого потребуются начальные знания в области электроники и несколько деталей.
На основе симистора
Такой прибор работает по принципу фазового смещения открывания ключа. Ниже представлена простейшая схема диммера на основе симистора:
Структурно прибор можно разделить на два блока:
- Силовой ключ, в роли которого используется симистор.
- Узел создания управляющих импульсов на основе симметричного динистора.
С помощью резисторов R1-R2 создан делитель напряжения. Следует обратить внимание, что сопротивление R1 – переменное. Это позволяет менять напряжение в линии R2-C1. Между этими элементами включен динистор DB3. Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс.
В результате силовой ключ включается, и через него начинает проходить электроток на нагрузку. Положение регулятора определяет, в какой части фазы волны должен сработать силовой ключ.
На базе тиристора
Эти проборы также достаточно эффективны, а их схемы не отличаются высокой сложностью. Роль ключа в таком устройстве выполняет тиристор. Если внимательно изучить схему прибора, то сразу можно заметить главное отличие этой схемы от предыдущей – для каждой полуволны используется собственный ключ с управляющим динистором.
Принцип работы тиристорного прибора следующий:
- Когда через линию R5-R4-R3 проходит положительная полуволна, конденсатор C1 заряжается.
- После достижения порога включения динистора V3 он срабатывает, и электроток поступает на ключ V1.
- При прохождении отрицательной полуволны наблюдается аналогичная ситуация для линии R1-R2-R5, управляющего динистора V4 и ключа V2.
С помощью фазных регуляторов можно управлять не только яркостью ламп накаливания, но и другими видами нагрузок, например, количеством оборотов дрели. Однако следует помнить, что прибор на основе тиристора нельзя применять для работы со светодиодными и люминесцентными лампочками.
Также в быту используются конденсаторные регуляторы. Однако в отличие от полупроводниковых приборов, они не позволяют плавно изменять напряжение. Таким образом, для самостоятельного изготовления лучше всего подходят тиристорная и симисторная схемы.
Найти все необходимые для изготовления регулятора детали не составит труда. При этом их не обязательно покупать, а можно выпаять из старого телевизора или другой радиоаппаратуры. При желании на основе выбранной схемы можно сделать печатную плату, а затем впаять в нее все элементы. Также детали можно соединить обычными проводами. Домашний мастер может выбрать тот способ, который покажется ему наиболее привлекательным.
Оба рассмотренных устройства довольно легко собрать, и для выполнения всех работ не нужно обладать серьезными знаниями в области электроники. Даже начинающий радиолюбитель сможет изготовить своими руками схему регулятора напряжения 220в. При невысокой стоимости, они практически ни в чем не уступают заводским аналогам.
Симисторный регулятор мощности до трёх киловатт своими руками
Такой простой, но в то же время очень эффективный регулятор, сможет собрать практически каждый, кто может держать в руках паяльник и хоть слегка читает схемы. Ну а этот сайт поможет вам осуществить своё желание. Представленный регулятор регулирует мощность очень плавно без бросков и провалов.Схема простого симисторного регулятора
Такой регулятор можно применить в регулировании освещения лампами накаливания, но и светодиодными тоже, если купить диммируемые. Температуру паяльника регулировать — легко. Можно бесступенчато регулировать обогрев, менять скорость вращения электродвигателей с фазным ротором и ещё много где найдётся место такой полезной вещице. Если у вас есть старая электродрель, у которой не регулируются обороты, то применив этот регулятор, вы усовершенствуете такую полезную вещь.
В статье, с помощью фотографий, описания и прилагаемого видео, очень подробно описан весь процесс изготовления, от сбора деталей до испытания готового изделия.
Сразу говорю, что если вы не дружите с соседями, то цепочку C3 — R4 можете не собирать. (Шутка) Она служит для защиты от радиопомех.
Все детали можно купить в Китае на Алиэкспресс. Цены от двух до десяти раз меньше, чем в наших магазинах.
Для изготовления этого устройства понадобится:
- R1 – резистор примерно 20 Ком, мощностью 0,25вт;
- R2 – потенциометр примерно 500 Ком, можно от 300 Ком до 1 Мом, но лучше 470 Ком;
- R3 — резистор примерно 3 Ком, 0, 25 Вт;
- R4- резистор 200-300 Ом, 0, 5 Вт;
- C1 и C2 – конденсаторы 0, 05 МкФ, 400 В;
- C3 – 0, 1 МкФ, 400 В;
- DB3 – динистор, есть в каждой энергосберегающей лампе;
- BT139-600, регулирует ток 18 А или BT138-800, регулирует ток 12 А – симисторы, но можно взять и любые другие, в зависимости от того, какую нагрузку нужно регулировать. Динистор ещё называют диак, симистор – триак.
- Радиатор охлаждения выбирается от величины планируемой мощности регулирования, но чем больше, тем лучше. Без радиатора можно регулировать не более 300 ватт.
- Клеммные колодки можно поставить любые;
- Макетную плату применять по вашему желанию, лишь бы всё вошло.
- Ну и без прибора, как без рук. А вот припой применять лучше наш. Он хоть и дороже, но намного лучше. Хорошего припоя Китайского не видел.
Приступаем к сборке регулятора
Сначала нужно продумать расстановку деталей так, чтобы ставить как можно меньше перемычек и меньше паять, затем очень внимательно проверяем соответствие со схемой, а потом все соединения запаиваем.
Убедившись, что ошибок нет и поместив изделие в пластиковый корпус, можно опробовать, подключив к сети.
Будьте очень внимательны при испытании. Все детали схемы находятся под прямым напряжением сети 220 вольт и прикосновение к ним, является очень опасным.
Если сборка вами проведена правильно, то всё должно заработать сразу. Устройство в регулировке и наладке не нуждается.
Испытание регулятора мощности
4 схемы на Регулятор напряжения своими руками 0-220в
8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля
Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.
Регулятор напряжения
Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!
ТЕСТ:
4 вопроса по теме регуляторов напряжения
- Для чего нужен регулятор:
а) Изменение напряжения на выходе из прибора.
б) Разрывание цепи электрического тока
- От чего зависит мощность регулятора:
а) От входного источника тока и от исполнительного органа
б) От размеров потребителя
- Основные детали прибора, собираемые своими руками:
а) Стабилитрон и диод
б) Симистор и тиристор
- Для чего нужны регуляторы 0-5 вольт:
а) Питать стабилизированным напряжением микросхемы
б) Ограничивать токопотребление электрических ламп
Ответы.
а,а,б,а.
2 Самые распространенные схемы РН 0-220 вольт своими руками
Схема №1.
Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.
СНиП 3.05.06-85Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.
Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.
Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.
Схема №2.
Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.
СНиП 3.05.06-85В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.
Как избежать 3 частых ошибок при работе с симистором.
- Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
- Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
- При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.
3 Основных момента при изготовлении мощного РН и тока своими руками
Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.
Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.
СНиП 3.05.06-85Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.
2 основных принципа при изготовлении РН 0-5 вольт
- Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
- Питание микросхем производится только постоянным током.
Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.
Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:
- Первый вывод – входной сигнал.
- Второй вывод – выходной сигнал.
- Третий вывод – управляющий электрод.
Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.
СНиП 3.05.06-85Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.
Регулятор напряжения 0 — 220в
Топ 4 стабилизирующие микросхемы 0-5 вольт:
- КР1157 – отечественная микросхема, с пределом по входному сигналу до 25 вольт и током нагрузки не выше 0.1 ампер.
- 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
- TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
- L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.
РН на 2 транзисторах
Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.
СНиП 3.05.06-85Ответы на 4 самых частых вопроса по регуляторам:
- Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
- От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
- Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
- Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.
4 Схемы РН своими руками и схема подключения
Коротко рассмотрим каждую из схем, особенности, преимущества.
Схема 1.
Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.
СНиП 3.05.06-85Схема 2.
Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.
СНиП 3.05.06-85Схема 3.
Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.
СНиП 3.05.06-85Схема 4.
Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.
СНиП 3.05.06-85В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.
Название | Мощность | Напряжение стабилизации | Цена | Вес | Стоимость одного ватта |
Module ME | 4000 Вт | 0-220 В | 6.68$ | 167 г | 0.167$ |
SCR Регулятор | 10 000 Вт | 0-220 В | 12.42$ | 254 г | 0.124$ |
SCR Регулятор II | 5 000 Вт | 0-220 В | 9.76$ | 187 г | 0.195$ |
WayGat 4 | 4 000 Вт | 0-220 В | 4.68$ | 122 г | 0.097$ |
Cnikesin | 6 000 Вт | 0-220 В | 11.07$ | 155 г | 0.185$ |
Great Wall | 2 000 Вт | 0-220 В | 1.59$ | 87 г | 0.080$ |
Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.
Подборка тематических выдержек из статей
|
|
Регулятор напряжения для тена от 1 до 6 кВт
Регулятор напряжения в электрических цепях, служит для изменения мощности, подаваемой в нагрузку. С помощью регулятора напряжения можно управлять скоростью вращения электродвигателей, уровнем освещенности и нагревательными приборами такие как паяльник, электрическая плитка, тэн. В радиомагазинах можно купить готовое изделие но сделать регулятор напряжения своими руками не сложно.
В процессе самогоноварения выяснилось что на газу процес нагревания браги происходит достаточно долго (около 2-х часов) и к тому же, неудобно регулировать процесс дистилляции браги, газовой плиткой. В следствии чего возникла острая необходимость в модернизации самогонного(дистиллятного) аппарата, врезкой в него электрического нагревателя. Изначально задумывалось, что тен будет ставится мощностью 3 kW но в дальнейшем передумали и уменьшили до 2500 ватт. Далее нам понадобилась регулировка напряжения для управления процессом дисциляции, её мы решили изготовить своими руками, благо схем в общем доступе полно, они простые, минимум деталей и изготовление много времени не занимает.
Схема регулятора напряжения на 220 вольт
- Рисунок 1. Схема.
Схема состоит из симистора, BTA41-800B по названию можно определить его параметры ток и напряжение. Например BTA это обозначение симистора, 41 это его ток в амперах и 800B это его напряжение. Симистор можна заменить на более слабый ток для этого нужно мощность вашего тена разделить на напряжение, например: 2 кВт разделить на напряжение в сети 220 вольт мы получим нужный нам ток 2000/220=9,1 Ампер. В этом случае мы можем использовать другой симистор BTA12-600B, но так как симистор будет работать практически на пределах своих возможностей, он будет греться и придется закрепить его на радиатор, в противном случае он может выйти из строя.
- Рисунок 2. Схема с вольтметром.
Примечание.В схеме можно применять любой симистор не менее 600B и током в зависимости применяемого нагревательного элемента. В любом случае для облегчения работы симистора его следует разместить на радиаторе охлаждения. Дополнительно можно поставить вольтметр на выход схемы, чтобы видеть изменение напряжения наглядно и на вход поставить автомат на 16-25 ампер.
Детали для схемы:
1.Симистор выбираем от нагрузки но можете как в моем случае чем больше тем лучше BTA8-600b, BTA12-600b, BTA16-600b, BTA20-600b, BTA24-600b, BTA25-600b, BTA26-600b, BTA40-600b, BTA41-600b.
2.Потенциометр можно ставить в пределах от 470 кОм до 1 мегаом (МОм). Советую ставить потенциометр на 1 МОм так как у него больше диапазон регулировки, можно регулировать фактически до нуля. В начале я собрал схему с потенциометром на 500 кОм и в дальнейшем перепаивал на 1 мОм.
3.Динистор DB3 у него нет полярности припаиваем как хотим.
4.Резистор 10 кОм.
5.Конденсатор керамический 0,1 мкФ.
Изготовление схемы
- Рисунок 3. Схема в моем исполнение.
Для изготовления схемы нам понадобится в первую очередь паяльник, припой и канифоль и радио детали которые без труда можно приобрести в любом радио-магазине. Пожалуйста, уделяйте пристальное внимание, есть риск поражения электрическим током (как и во всем электрическом).
И так, для начала берем печатную плату и на ней располагаем компактно все детали после чего спаиваем все по схеме. Останется прикрепить симистор на радиатор. Я взял радиатор из старого блока питания телевизора. И останется самое сложное найти корпус и разместить схему в нем. На собирание схемы по времени у меня ушло буквально 15 минут.
- Рисунок 4. Схема регулятора мощности в моем исполнение.
Примечание. Эта схема часто встречается в пылесосах, китайских точильных станках.
- Рисунок 5. Регулировка с пылесоса.
Также можно заказать с сайта Алиэкспресс вот несколько вариантов. 1 вариант, 2 вариант по заверению китайца способен держать 5 кВт, 3 вариант в красивом корпусе с вольтметром, 4 вариант.
Как происходит процесс регулировки напряжения в дистилляторном аппарате.
На начальном этапе нагреватель включаем на полную мощность. После достижения температуры (78,8) градусов, что соответствует точки кипения этилового спирта, мощность нагревателя уменьшаем. Опытным путем меняя положения регулятора, нужно добиться того, чтобы весь выделяющийся пар конденсировался системой охлаждения. Это поможет избежать лишних потерь спирта и в то же время при правильно подобранной мощности позволит сократить время производства до возможного минимума.
Регулятор напряженияРегулятор мощности тиристорный, схемы регуляторов напряжения на тиристорах
В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.
В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.
Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.
Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.
Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.
Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.
Как совершает свою работу тиристор?
Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.
Тиристор обладает сразу тремя выводами тока:
- Катод.
- Анод.
- Управляемый электрод.
Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.
Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.
Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.
Область использования тиристорных устройств
В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.
Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?
Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.
Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.
Как работает такое устройство?
Описанные ниже характеристики будет соответствовать большинству схем.
- Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
- Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.
При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.
Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).
В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.
Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.
Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.
Тиристорный регулятор напряжения своими руками
Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.
Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.
Способы регулирования фазового напряжения в сети
- Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
- Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
- Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.
На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.
Схемы на тиристорах
Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.
Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.
- VD — КД209 (либо близкие по его общим характеристикам).
- R 1 — сопротивление с особым номиналом в 15 кОм.
- R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
- Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).
Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.
Основы электроники: регулятор напряжения
Создание регулятора напряжения
Теория предыстории: как работает регулятор напряжения?
Название говорит само за себя: регулятор напряжения. Аккумулятор в вашем автомобиле, который заряжается от генератора, розетка в вашем доме, которая обеспечивает все необходимое вам электричество, сотовый телефон , который вы, вероятно, будете держать под рукой каждую минуту дня, все они требуют определенного напряжения, чтобы функция. Колеблющиеся выходы, превышающие ± 2 В, могут привести к неэффективной работе и, возможно, даже к повреждению ваших зарядных устройств.Существует множество причин, по которым могут возникать колебания напряжения: состояние электросети, включение и выключение других устройств, время суток, факторы окружающей среды и т. Д. Из-за необходимости постоянного постоянного напряжения введите регулятор напряжения.
Стабилизатор напряжения — это интегральная схема (ИС), которая обеспечивает постоянное фиксированное выходное напряжение независимо от изменения нагрузки или входного напряжения. Это можно сделать разными способами, в зависимости от топологии схемы внутри, но для того, чтобы этот проект оставался базовым, мы в основном сосредоточимся на линейном регуляторе.Линейный регулятор напряжения работает, автоматически регулируя сопротивление через контур обратной связи, учитывая изменения как нагрузки, так и входа, при этом сохраняя постоянное выходное напряжение.
Микросхема стабилизатора напряжения в корпусе ТО-220 С другой стороны, для импульсных регуляторов, таких как понижающий (понижающий), повышающий (повышающий) и понижающий-повышающий (повышающий / понижающий), требуется несколько дополнительных компонентов, а также повышенная сложность как различные компоненты повлияют на результат. Импульсные регуляторы намного более эффективны с точки зрения преобразования энергии, где эффективность играет большую роль, но линейные регуляторы очень хорошо работают в качестве регуляторов напряжения в низковольтных приложениях.
В зависимости от приложения, стабилизатору напряжения может также потребоваться больше внимания для улучшения других параметров, таких как пульсирующее напряжение на выходе, переходная характеристика нагрузки, падение напряжения и выходной шум. Такие приложения, как аудиопроекты, более чувствительны к шуму и помехам, поэтому потребуется дополнительная фильтрация, особенно в импульсных регуляторах, где пульсации на выходе могут быть значительными. Большую часть информации, включая схемы, можно найти в техническом описании микросхемы регулятора напряжения, с которой вы работаете, в разделе «Примечания по применению».
Рекомендации по применению регулятора 7805T
Afrotechmods также имеет информативное видео о работе с популярным регулятором напряжения LM317T для получения регулируемого выхода.
Проект
Комплект регулятора напряжения макетной платы — отличный набор для пайки для любого новичка. Он выдает чистое 5 В постоянного тока с максимальным выходным током 500 мА. Он способен принимать диапазон входного напряжения от 6 до 18 В постоянного тока и имеет контакты, размер которых идеально подходит для любой стандартной макетной платы с 0.Расстояние 1 дюйм.В комплект входит:
(1) Печатная плата
(1) Выключатель питания
(1) Разъем питания постоянного тока 2,1 мм
(1) Электролитический конденсатор 10 мкФ
(1) Монолитный конденсатор 0,1 мкФ
(1) Резистор 1 кОм
(1) Красный источник питания светодиодный индикатор
(1) Разъемы контактов
(1) Руководство пользователя
Вам понадобятся:
• Паяльник
• Припой
• Фрезы
• Блок питания настенного адаптера 6-18В (Mean Well GS06U-3PIJ)
Комплект стабилизатора напряжения макетной платы Solarbotics 34020
Направление:
1.Резистор и конденсатор 0,1 мкФ:
Удалите ленту и согните выводы резистора, затем вставьте его в положение, обозначенное R1. Припаяйте его с другой стороны и отрежьте лишние выводы. Сделайте то же самое для конденсатора 0,1 мкФ в позиции C2. Неважно, как эти детали установлены — они не поляризованные .
2. Регулятор напряжения и цилиндрический домкрат:
Припаяйте регулятор напряжения в положение V-REG. Убедитесь, что сторона табуляции выровнена с жирной линией на символе — обратное направление не сработает! Затем обрежьте лишние провода.Защелкните цилиндрический домкрат в положение B1 и припаяйте его на место.
3. Конденсатор 10 мкФ и индикатор питания:
Установите электролитический конденсатор 10 мкФ в положение C1. Позиционирование имеет решающее значение. Убедитесь, что более длинный провод входит в площадку, отмеченную (+). Убедитесь, что он находится в правильном положении, проверив, что полоса на стороне конденсатора находится ближе всего к этикетке PWR. Сделайте то же самое со светодиодом; более длинный вывод входит в круглую площадку.Вы можете убедиться, что светодиод находится в правильном положении, заметив небольшую выемку на светодиоде, расположенную на стороне символа светодиода с линией (рядом с квадратной площадкой).
4. Контакты выключателя питания и макетной платы:
Выключатель питания просто устанавливается в положение PWR. С выводами на макетной плате посложнее — они идут снизу, и их сложнее удерживать при пайке. Тщательно припаяйте их как можно ровнее вручную или, если вы уверены, вставьте длинную сторону контактов в макет так, чтобы они совпадали с отверстиями в печатной плате, затем припаяйте их, пока макетная плата удерживает все выровненные.
5. Настройка шин питания:
ЭТО ВАЖНО. Если вы забудете это сделать, ваша доска не будет работать! Выберите, на какой стороне макета вы хотите установить плату (в этом примере мы используем левую сторону). Обратите внимание на полярность направляющих макетной платы «+» внизу и «-» вверху. Найдите, какой набор контактных площадок на плате соответствует этому расположению, и нанесите каплю припоя на маленькие полумесяцы.
Если вы планируете переключать полярность питания на направляющих, вы можете установить номер детали SWT7 на контактные площадки между контактными площадками. Не оставляйте капли на подушечках, если вы это сделаете. Обратите внимание, что это не рекомендуемая модификация.
Подайте питание на плату от любого источника постоянного тока диаметром 2,1 мм с номинальным напряжением 6–18 В — не превышайте максимальное значение 35 В постоянного тока! Регулятор мощности нагревается при питании от более 12 В (это нормально). Если вы не хотите использовать его на макетной плате, используйте контактные площадки с маркировкой «+ -» на конце, ближайшем к гнезду цилиндра, для регулируемой выходной мощности 5 В.
Шаг 5
SWT7 Навесной
Вопросы для обсуждения
1.Какое влияние на выход цепи окажут тепло и шум?
2. Как конденсаторы помогают отфильтровывать помехи?
3. Каковы преимущества и недостатки линейных и импульсных регуляторов?
Как сделать регулятор напряжения постоянного тока
Регуляторы напряжения помогают контролировать или регулировать напряжение с помощью электрических устройств, таких как источники питания переменного тока. Источники питания переменного тока подвержены колебаниям, возникающим в результате размыкания или замыкания переключателей или удара молнии. Регуляторы постоянного напряжения подают опорные напряжения, которые помогают стабилизировать эти колебания.
Для изготовления регулятора постоянного напряжения используйте линейный монолитный стабилизатор на интегральной схеме. Они легкие, недорогие и способны выдавать стабильное опорное напряжение. Они также относительно прочные для своего размера. Стабилизаторы напряжения IC имеют три клеммы или контакта, которые обычно подключаются к конденсаторам, чтобы контролировать пульсации или колебания.
Определите требования к выходному напряжению и мощности, которые вам нужны, и выберите регулятор напряжения IC на этой основе. Например, если необходимо пять вольт, выберите регулятор напряжения LM7805, который имеет выходное напряжение пять вольт.Микросхема LM7806 имеет выходное напряжение шесть вольт. Оба могут выдерживать токи нагрузки до одного А.
Используйте технический паспорт и изучите спецификации и распиновку регулятора IC. Серия 78xx требует, чтобы входное напряжение было на первом контакте, а выходное — на втором. Поскольку при включении в цепь происходит падение напряжения на два-три вольта, входное напряжение должно быть на два-три вольта больше, чем выходное.
Подключите положительный конец источника питания к одному концу 0.Конденсатор на 22 мкФ. При необходимости можно использовать конденсатор большего размера.
Подключите контакт 1 регулятора IC к той же стороне конденсатора, который подключен к источнику питания. Подключите свободный конец конденсатора к земле.
Добавьте провод и подключите третий контакт к земле. Третий контакт обычно подключается непосредственно к земле, хотя иногда для регулировки выходного напряжения используется резистор.
Добавьте конденсатор 0,1 мкФ, подключив один конец к контакту два, а другой конец — к земле.Присоедините к цепи отрицательную сторону источника питания.
Включите источник питания. Подключите мультиметр к напряжению постоянного тока и измерьте выходной сигнал от второго контакта. Сумма должна приблизительно соответствовать опорному напряжению регулятора IC, например, пять или шесть вольт.
Учебное пособие по регулятору напряжения — The Geek Pub
Регулятор напряжения — это очень удобный электронный компонент, который нужно иметь в своем арсенале. Стабилизатор напряжения преобразует нерегулируемое напряжение, которое может колебаться (или напряжение выше, чем напряжение, необходимое для работы устройства), и преобразует его в идеально стабильное напряжение, которое не изменится даже при изменении входного сигнала.В этом руководстве по регулятору напряжения мы узнаем все о регуляторах напряжения и о том, как они работают.
Учебное пособие и основы работы с регулятором напряжения
Представьте, что у вас есть батарея на 9 вольт, но для работы устройства, которое вам нужно, требуется 5 вольт. Если вы подадите на устройство напряжение более 5 В, это приведет к перегреву или повреждению устройства. Вот где стабилизатор напряжения может быть мощным союзником! Стабилизатор напряжения LM7805 принимает на входе от 7 до 25 вольт (в зависимости от точных спецификаций производителя).На выходе он выдает идеально стабильные 5 вольт, что позволяет нам питать наше устройство! Аккуратный!
Иногда у вас есть блоки питания, которые не регулируются. Это означает, что их выходное напряжение будет изменяться в зависимости от входного напряжения. Нерегулируемый источник питания на 12 вольт может варьироваться от 10 до 14 вольт. Это может быть очень нежелательно для современной электроники. Опять же, добавление регулятора напряжения решает проблему!
Стабилизаторы напряжения доступны практически с любыми выходными характеристиками, которые могут вам понадобиться.На самом деле, вот вам фантастический ассортиментный набор, который стоит менее 15 долларов. Он имеет 14 различных выходных значений!
Когда вы разбираете его до самой простой формы, регулятор напряжения обрезает напряжение, если оно превышает его номинальное выходное напряжение, оставляя вам стабильно надежное напряжение, независимо от того, выше или изменяется входное напряжение. Большинство современных регуляторов напряжения имеют точность в пределах +/- 5% от своего номинала, и вы можете получить их с точностью до + / 11%, если они вам понадобятся.
Технические характеристики и нумерация регулятора напряжения
В нашем руководстве по регулятору напряжения давайте поговорим о нумерации регуляторов напряжения! Большинство регуляторов напряжения имеют следующую нумерацию. Чаще всего они начинаются с L или LM (но не всегда). Далее следуют 78 для положительного регулятора или 79 для регуляторов отрицательного напряжения (подробнее об этом позже). Последние две цифры обычно обозначают их выходное напряжение, 03, 05, 09, 12 и т. Д. Иногда есть завершающая буква, которая указывает на точность или особенность некоторых регуляторов напряжения.
Вот несколько примеров того, как может быть пронумерован регулятор напряжения:
Важно помнить, что они могут отличаться от производителя к производителю, поэтому всегда проверяйте их спецификации, чтобы убедиться, что вы знаете, что получаете. Кроме того, некоторые производители заменяют LM буквами своей торговой марки, например TT7805. Лучший способ узнать наверняка — просто погуглить номер детали.
Распиновка LM78XX
Регуляторы напряжения LM78XX, такие как LM7805, LM7809 и LM7812, представляют собой трехконтактные ИС.Распиновка для этих регуляторов следующая:
Регуляторы положительного и отрицательного напряжения
Регуляторы напряжения также бывают в версиях с отрицательным и положительным выходом. С электричеством постоянного тока все относительно земли. Положительное напряжение выше потенциала земли системы, а отрицательное напряжение ниже потенциала земли. Для регулирования отрицательного напряжения вам понадобится стабилизатор отрицательного напряжения.
Некоторые люди думают, что регуляторы отрицательного напряжения выводят отрицательное напряжение на входе положительного напряжения.Это не тот случай. Регуляторы отрицательного напряжения не скрывают положительное напряжение в отрицательное. Вам понадобится источник отрицательного напряжения от вышестоящего трансформатора (или иметь отдельную батарею в портативных устройствах).
Подключение регулятора напряжения
Во многих проектах на YouTube и в других местах мы видим регуляторы напряжения, просто уложенные за трансформатором и перед каким-то чипом или устройством, на которое они подают ток. Хотя это будет работать в большинстве случаев, лучше всего использовать три конденсатора с регулятором, чтобы получить максимальную точность и стабильный выходной сигнал.
Вы должны разместить 10 мкФ на входе и выходе, как правило, электролитические, и дополнительный керамический конденсатор 0,1 мкФ на выходе. Если у вас нет этих точных значений, в большинстве случаев должно работать что-то близкое.
Вот диаграмма стиля Фритцинга и стандартная схема цепи регулятора напряжения для справки:
Кроме того, вы захотите проверить спецификации, чтобы увидеть, требуется ли радиатор для вашего приложения. Во многих случаях стабилизатор напряжения без радиатора работает только до 100 миллиампер.Для увеличения потребляемого тока вам понадобятся радиаторы все больше и больше.
Недостатки регуляторов напряжения
Далее в нашем руководстве по регулятору напряжения нам нужно поговорить о некоторых дополнительных предостережениях при использовании регуляторов напряжения, о которых вам следует знать. Они не идеальны для каждого проекта и могут иметь некоторые существенные недостатки при использовании в неправильных приложениях.
Эффективность регулятора напряжения
Регуляторы напряжения обычно не считаются эффективными устройствами.Вы можете рассчитать, сколько отходов они произведут, используя следующую формулу:
(Vin — Vout) X потребляемый выходной ток.
Если вы произведете вычисления на 5-вольтовой цепи, потребляемой 500 миллиампер (или 0,5 ампера) при входном напряжении 12 вольт, то окажется, что это 3,5 Вт тепла, выделяемого (или потраченного впустую). Если вы ищете более низкое энергопотребление, вам нужно поискать в другом месте.
Теперь есть еще две вещи, которые вам следует знать о линейных регуляторах напряжения.
Падение напряжения регулятора напряжения
У регуляторов напряжения есть так называемое падение напряжения.Это точка, в которой входное напряжение слишком низкое, чтобы поддерживать стабильное выходное напряжение. Помните, эту трату? Мы должны где-то это объяснить! Большинство регуляторов напряжения имеют падение напряжения 2 В. Это означает, что вам потребуется минимум 7 вольт на входе, чтобы получить стабильные 5 вольт на выходе стандартного LM7805. Существуют регуляторы напряжения, называемые регуляторами напряжения с низким падением напряжения, которые имеют лучшие характеристики.
Регуляторы напряжения выделяют много тепла
Также важно отметить, что чем выше входное напряжение, тем больше тепла будет создавать регулятор напряжения и тем больший радиатор вам понадобится.Сохранение входного напряжения как можно более низким определенно помогает повысить эффективность схемы.
Если вы обнаружите, что это немного сбивает вас с толку, вы можете также проверить наши отличные руководства по напряжению и току!
Как правильно выбрать регулятор (ы) напряжения для вашей конструкции
В этой статье показано, как выбрать лучший тип стабилизатора напряжения для вашего конкретного электронного продукта.
Вероятно, более 90% продуктов требуют регулятора напряжения того или иного типа, что делает их одними из наиболее часто используемых электрических компонентов.
Если у вас нет возможности работать напрямую от напряжения батареи или внешнего адаптера постоянного / переменного тока, необходим регулятор напряжения. Скорее всего, потребуется несколько регуляторов напряжения.
Эта статья — ваше руководство по выбору регуляторов напряжения, подходящих для вашей конструкции. Мы расскажем обо всем, от определения того, какой тип регулятора напряжения вам нужен, до выбора того, который соответствует вашим конкретным требованиям.
Выбор необходимого регулятора
Первым шагом в выборе правильного регулятора напряжения является определение входного напряжения, выходного напряжения и максимального тока нагрузки.
Хотя существует множество других спецификаций, эти три помогут вам начать работу и помогут сузить круг необходимого вам регулятора.
Регуляторы напряженияможно разделить на две широкие классификации:
- Понижающий : Выходное напряжение ниже входного
- Повышающий : выдает напряжение, превышающее входное
Знание входного и выходного напряжения поможет вам легко решить, к какой группе относится ваш регулятор.
Регуляторы напряжения, которым требуется выходное напряжение меньше входного, являются наиболее распространенным типом регуляторов напряжения. Например, вы вводите 5 В и выдает 3,3 В, или вы вводите 12 В и выдает 5 В.
Вам необходимо рассмотреть два типа регуляторов:
- Линейные регуляторы : простые, дешевые и бесшумные, но могут иметь низкую энергоэффективность. Линейные регуляторы способны только понижать напряжение.
- Импульсные регуляторы : Высокая энергоэффективность, но более сложная и дорогая, с большим шумом на выходе.Импульсные регуляторы могут использоваться как для понижения, так и для повышения напряжения.
Если вам требуется выходное напряжение ниже входного, начните с линейного регулятора, а не импульсного регулятора.
Рисунок 1. Линейный регулятор использует транзистор и контур управления с обратной связью для регулирования выходного напряжения. Линейный регулятор может производить только выходное напряжение ниже входного.
Линейные регуляторы намного дешевле и проще в использовании, чем импульсные регуляторы, поэтому они, как правило, должны быть вашим первым выбором.
Единственный случай, когда вы не хотите использовать линейный стабилизатор, — это если рассеиваемая мощность слишком велика или вам нужно повысить напряжение.
Определение рассеиваемой мощности
Хотя линейные регуляторы дешевы и просты в использовании, основным недостатком является то, что они могут тратить много энергии. Это может вызвать чрезмерный разряд батареи, перегрев или повреждение продукта.
Если у вас есть аккумулятор, мощность которого расходуется на тепло, аккумулятор разряжается быстрее.Если это не аккумулятор, но он по-прежнему выделяет значительное количество тепла, это может вызвать другие проблемы с вашей конструкцией.
Фактически, при определенных условиях линейный регулятор может выделять столько тепла, что фактически разрушает себя. Очевидно, вы этого не хотите.
При использовании линейного регулятора начните с определения того, сколько мощности будет рассеиваться регулятором.
Для линейных регуляторов используйте уравнение:
Мощность = (Входное напряжение — Выходное напряжение) x Ток (Уравнение 1)
Можно предположить, что выходной ток (также называемый током нагрузки) примерно такой же, как входной ток для линейных регуляторов.
На самом деле, входной ток равен выходному току плюс ток покоя, который потребляет линейный регулятор для выполнения функции регулирования.
Однако для большинства регуляторов ток покоя чрезвычайно мал по сравнению с током нагрузки, поэтому достаточно предположить, что выходной ток равен входному.
Как видно из уравнения 1, если у вас большой перепад напряжения (Vin — Vout) на регуляторе и / или большой ток нагрузки, то ваш регулятор будет рассеивать большое количество энергии.
Например, если на входе 12 В, а на выходе 3,3 В, разность напряжений будет рассчитана как 12 В — 3,3 В = 8,7 В.
Если ток нагрузки составляет 1 ампер, это означает, что регулятор должен рассеивать 8,7 Вт мощности. Это огромная потеря мощности, с которой не справится любой линейный регулятор.
Если, с другой стороны, у вас есть высокий перепад напряжения, но вы используете ток нагрузки всего в несколько миллиампер, тогда мощность будет небольшой.
Например, в приведенном выше случае, если вы теперь используете ток нагрузки только 100 мА, рассеиваемая мощность упадет до 0,87 Вт, что гораздо более приемлемо для большинства линейных регуляторов.
При выборе линейного регулятора недостаточно просто убедиться, что входное напряжение, выходное напряжение и ток нагрузки соответствуют спецификациям регулятора.
Например, у вас есть линейный регулятор, рассчитанный на напряжение до 15 В и ток 1 А. Вы думаете: «Хорошо, если это так, я могу подать на вход 12 В, взять 3.3 В на выходе и запустить его при 1 А, не так ли? »
Неправильно! Вы должны убедиться, что линейный регулятор может выдерживать даже такое количество мощности. Способ сделать это — определить, насколько сильно нагреется регулятор, в зависимости от мощности, которую он должен рассеять.
Для этого сначала рассчитайте, сколько мощности будет рассеивать линейный регулятор, используя уравнение 1 выше.
Во-вторых, посмотрите в таблице данных регулятора в разделе «тепловые характеристики» параметр под названием «Theta-JA», выраженный в единицах ° C / Вт (° C на ватт).
Theta-JA указывает на количество градусов, на которое микросхема будет нагреваться выше температуры окружающего воздуха, на каждый ватт мощности, которую он должен рассеять.
Просто умножьте рассчитанную рассеиваемую мощность на Theta-JA, и вы узнаете, насколько сильно линейный регулятор будет нагреваться при такой мощности:
Мощность x Theta-JA = Температура выше окружающей (Уравнение 2)
Допустим, ваш регулятор соответствует спецификации Theta-JA 50 ° C на ватт.Это означает, что если ваш продукт рассеивает:
- 1 ватт, он нагреется до 50 ° C.
- 2 Вт нагреется до 100 ° C.
- ½ Вт нагревается до 25 ° C.
Важно отметить, что рассчитанная выше температура представляет собой разницу температур выше температуры окружающего воздуха.
Допустим, вы подсчитали, что при ваших условиях питания регулятор будет рассеивать 2 Вт мощности. Вы умножаете это на Theta-JA, и вы определяете, что он нагреется до 100 ° C.
Здесь важно не забыть добавить температуру окружающего воздуха. Комнатная температура обычно составляет 25 ° C. Следовательно, вы должны добавить 25 ° C к 100 ° C. Теперь у вас температура 125 ° C.
125 ° C — это максимальная температура, на которую рассчитано большинство электронных компонентов, поэтому вы никогда не захотите намеренно превышать 125 ° C.
Обычно вы не повредите свой продукт, пока не достигнете температуры примерно от 170 ° C до 200 ° C. К счастью, у большинства регуляторов также есть тепловое отключение, которое срабатывает при температуре около 150 ° C, поэтому они отключатся до того, как вызовут какие-либо повреждения.
Однако некоторые регуляторы не имеют теплового отключения, поэтому вы можете повредить их, если они рассеивают слишком много энергии.
В любом случае, вы не хотите, чтобы ваш продукт постоянно перегревался и ему приходилось отключаться, чтобы остыть.
Также следует учитывать, что температура воздуха не всегда может быть 25 ° C.
Допустим, ваш регулятор все еще нагревается до 100 ° C при нагрузке, но теперь температура окружающей среды составляет 50 ° C (например, в закрытой машине в жаркий летний день).
Теперь у вас 50 ° C плюс 100 ° C и температура до 150 ° C при загрузке. Вы превысили указанную максимальную температуру и находитесь на грани срабатывания теплового отключения.
Очевидно, этого следует избегать. Эксплуатация регулятора таким образом, чтобы он регулярно превышал заданную температуру 125 ° C, может не вызвать немедленного повреждения, но может сократить срок службы компонента.
Регуляторы с малым падением напряжения (LDO)
В некоторых случаях линейные регуляторы могут быть чрезвычайно эффективными, потребляя очень мало энергии.Это происходит, когда они работают с очень низким перепадом входного напряжения к выходному напряжению.
Например, если Vin — Vout составляет всего 300 мВ, то даже при токе нагрузки 3 А рассеиваемая мощность составляет всего 0,9 Вт, что является достаточно низкой мощностью, чтобы выдерживать нагрузку большинством регуляторов.
Минимальный дифференциал Vin-Vout, с которым может работать линейный регулятор, называется падением напряжения. Если разница между Vin и Vout падает ниже напряжения отключения, то регулятор находится в режиме отключения.
Регулятор в режиме отпускания просто выглядит как небольшой резистор от входа к выходу. Это означает, что выход, по сути, просто соответствует входному питанию, и на самом деле никакое регулирование не выполняется.
В большинстве случаев вы не хотите использовать линейный регулятор в режиме отключения. Это никоим образом не повредит чему-либо, но вы потеряете многие преимущества регулятора.
Например, если у вас много шума на входе, он обычно будет отфильтрован линейным регулятором.Однако эта фильтрация не будет происходить в режиме отключения, поэтому весь шум входного источника питания передается прямо на выходное напряжение.
Причина, по которой стабилизаторы с малым падением напряжения так полезны, заключается в том, что они позволяют управлять регулятором с очень малой рассеиваемой мощностью. Это связано с тем, что линейный регулятор наиболее эффективен, когда разница между Vin и Vout небольшая.
Многие старые линейные регуляторы имели очень высокое падение напряжения. Например, у популярных регуляторов серии 7800 значение падения напряжения составляет 2 В.Это означает, что входное напряжение должно быть как минимум на 2 В выше выходного напряжения.
Рисунок 2 — Старые трехконтактные линейные регуляторы требуют большего перепада напряжения Vin-Vout и, следовательно, расходуют больше энергии, чем более новые регуляторы LDO.
Хотя 2 В — это не так уж и много, если вы пропускаете через этот регулятор ток в 1 ампер и у вас есть разница в 2 В, то это 2 Вт энергии, теряемой зря.
Регуляторы LDO нового поколения могут иметь очень низкое падение напряжения менее 200 мВ при полной нагрузке.
LDO, работающий только с перепадом напряжения 200 мВ, может пропускать в 10 раз больше тока при той же рассеиваемой мощности, что и линейный стабилизатор, работающий с перепадом напряжения 2 В. Таким образом, 1 ампер тока с дифференциалом Vin-Vout 200 мВ соответствует лишь 0,2 Вт рассеиваемой мощности.
Краткое описание линейных регуляторов
Линейные регуляторы полезны, если:
- Разница между входным и выходным напряжением мала
- У вас низкий ток нагрузки
- Требуется исключительно чистое выходное напряжение
- Дизайн должен быть максимально простым и дешевым
Как мы обсудим дальше, импульсные стабилизаторы создают много шума на выходе и могут создавать нечеткое выходное напряжение.
Это может быть приемлемо для некоторых приложений, но во многих случаях требуется очень чистое напряжение питания. Например, при генерации напряжения питания для аналого-цифрового преобразователя или какой-либо звуковой схемы.
Таким образом, линейные регуляторы не только проще в использовании, но и обеспечивают гораздо более чистое выходное напряжение по сравнению с импульсными регуляторами, без пульсаций, всплесков или шума любого типа.
Таким образом, если рассеиваемая мощность не слишком велика или вам не требуется повышающий регулятор, линейный регулятор будет вашим лучшим вариантом.
Регуляторы переключения
Импульсные регуляторы намного сложнее для понимания, чем линейные регуляторы. Линейный регулятор основан на силовом транзисторе, который регулирует величину тока, разрешенного для подачи на выход.
ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF. 15 шагов для разработки нового электронного оборудования .
Если система управления линейного регулятора определяет, что выходное напряжение ниже, чем должно быть, то от входа к выходу может проходить больший ток.И наоборот, если обнаруживается, что выходное напряжение выше, чем должно быть, регулятор позволит меньшему току течь от входа к выходу, действуя таким образом, чтобы снизить выходное напряжение.
С другой стороны, импульсные регуляторы используют катушки индуктивности и конденсаторы для временного хранения энергии перед передачей ее на выход.
В этом уроке я проектирую печатную плату с использованием простого линейного регулятора, а в этом более глубоком курсе я проектирую индивидуальную плату с использованием более сложного импульсного регулятора.
Существует два основных типа импульсных регуляторов: повышающий и понижающий.
Понижающий импульсный стабилизатор также называется понижающим стабилизатором и, как линейный регулятор, выдает выходное напряжение ниже входного.
Рис. 3. Понижающий импульсный стабилизатор использует катушку индуктивности в качестве временного накопителя энергии для эффективного создания выходного напряжения ниже входного.
Если вы начали планировать использование линейного регулятора (понижающего), но определили, что рассеиваемая мощность слишком велика, тогда вам следует использовать понижающий импульсный стабилизатор.
В то время как повышающий импульсный стабилизатор создает выходное напряжение, превышающее входное, и называется повышающим регулятором.
Импульсные регуляторы очень эффективны даже при очень высоких разностях входа и выхода.
КПД равен выходной мощности, деленной на входную. Это отношение того, какая часть мощности от входа поступает на выход.
КПД = Pout / Pin = (Vout x Iout) / (Vin x Iin) (Уравнение 3)
Уравнение эффективности такое же для линейного регулятора.Однако, поскольку выходной ток равен входному току для линейного регулятора, уравнение 3 упрощается до простого:
КПД (линейный регулятор) = Vout / Vin (уравнение 4)
Например, предположим, что у вас на входе 24 В, а на выходе необходимо 3 В при токе нагрузки 1 А. Если бы это был линейный регулятор, он работал бы с чрезвычайно низким КПД, и почти вся мощность рассеивалась бы в виде тепла.
КПД линейного регулятора будет только 3 В / 24 В = 12.5%. Это означает, что только 12,5% мощности от входа поступает на выход. Остальные 87,5% передаваемой мощности теряются в виде тепла!
С другой стороны, импульсные регуляторы обычно имеют КПД 90% или больше независимо от разницы между входным и выходным напряжениями. Для импульсного регулятора около 90% мощности передается на выход и только 10% тратится впустую.
Только когда Vin и Vout близки друг к другу, линейный регулятор может сравниться по эффективности с импульсным регулятором.
Например, если у вас входное напряжение 3,6 В (напряжение литий-полимерной батареи), а на выходе выдается 3,3 В, то линейный регулятор будет иметь КПД 3,3 В / 3,6 В = 91,7%.
Повышающие регуляторы напряжения
В большинстве случаев выходное напряжение будет ниже входного. В этом случае следует использовать линейный регулятор или понижающий импульсный стабилизатор, как обсуждалось.
Однако есть и другие случаи, когда вам может потребоваться выходное напряжение выше входного.Например, если у вас аккумулятор на 3,6 В и вам нужно питание 5 В.
Рис. 4. В повышающем импульсном стабилизаторе катушка индуктивности используется в качестве временного накопительного элемента для эффективного создания выходного напряжения, превышающего входное.
Многие новички в электронике удивляются, узнав, что можно генерировать более высокое напряжение из более низкого напряжения. Для выполнения этой функции необходим импульсный регулятор, называемый повышающим регулятором.
В отличие от линейных регуляторов выходной ток импульсного регулятора не равен входному току. Вместо этого вы должны смотреть на входную мощность, выходную мощность и эффективность.
Рассчитаем входной ток для повышающего регулятора. Предположим, что входное напряжение — 3 В, выходное напряжение — 5 В, выходной ток — 1 А, а энергоэффективность — 90% (как указано в таблице данных).
Чтобы выяснить это, нам нужно использовать небольшую базовую алгебру для уравнения 3, чтобы найти входную мощность:
Pin = Pout / КПД (Уравнение 5)
Мы знаем, что эффективность составляет 90% (или 0.90), и мы знаем, что выходная мощность составляет 5 В x 1 А = 5 Вт. Мы можем рассчитать, что входная мощность составляет 5 Вт / 0,9 = 5,56 Вт.
Поскольку входная мощность составляет 5,56 Вт, а выходная мощность 5 Вт, это означает, что регулятор рассеивает только 0,56 Вт.
Далее, поскольку мы знаем, что мощность равна напряжению, умноженному на ток, это означает, что входной ток равен:
Входной ток = 5,56 Вт / Vin = 5,56 Вт / 3 В = 1,85 A (Уравнение 6)
Для повышающего регулятора входной ток всегда будет выше, чем выходной ток.С другой стороны, входной ток понижающего регулятора всегда будет меньше выходного тока.
Понижающие регуляторы
Допустим, вы получаете питание от двух последовательно соединенных батареек AA. При полной зарядке две батареи AA могут выдавать около 3,2 В, но когда они почти полностью разряжены, они выдают только 2,4 В.
В этом случае напряжение вашего источника питания может находиться в диапазоне от 2,4 В до 3,2 В.
Теперь предположим, что вам нужно выходное напряжение ровно 3 В независимо от состояния батарей.Когда батареи полностью заряжены (выходное напряжение 3,2 В), вам необходимо понизить напряжение батареи с 3,2 В до 3 В.
Однако, когда батареи близки к разряду (выходное напряжение 2,4 В), вам необходимо увеличить напряжение батареи с 2,4 В до 3 В.
В этом сценарии вы должны использовать так называемый повышающий-понижающий импульсный стабилизатор, который представляет собой просто комбинацию повышающего и понижающего регуляторов.
Вы можете использовать отдельный понижающий регулятор, за которым следует повышающий регулятор (или наоборот), чтобы решить эту проблему.Но обычно лучше использовать одинарный понижающе-повышающий регулятор.
Импульсный регулятор + линейные регуляторы
Помните о трех преимуществах линейных регуляторов: дешевизне, простоте и чистоте выходного напряжения.
Может быть много случаев, когда вы хотите использовать линейный стабилизатор, потому что вам нужно чистое выходное напряжение, но вы не можете, потому что они тратят слишком много энергии.
В этой ситуации вы можете использовать импульсный регулятор, за которым следует линейный регулятор.
Допустим, у вас есть входное напряжение от литий-полимерной батареи, равное 3.6 В, но вам понадобится источник clean 5 В.
Для этого вы должны использовать повышающий регулятор, чтобы поднять напряжение до значения чуть выше целевого выходного напряжения. Например, вы можете использовать повышающий регулятор для повышения напряжения с 3,6 В до 5,5 В.
Затем вы следуете этому с помощью линейного регулятора, который берет 5,5 В и понижает его до 5 В, а также очищает шум и пульсации для получения чистого сигнала.
Это очень распространенный метод получения КПД импульсного регулятора и бесшумного выходного напряжения линейного регулятора.
Если вы выбрали эту опцию и специально пытаетесь отфильтровать коммутируемый шум, обязательно обратите внимание на коэффициент подавления подачи питания (PSRR) линейного регулятора.
PSSR данного линейного регулятора изменяется в зависимости от частоты. Следовательно, PSSR обычно представляется в виде графика, который показывает, как линейный регулятор подавляет любые пульсации на входном питании на различных частотах.
Рисунок 5 — Коэффициент подавления помех от источника питания (PSRR) в зависимости от частоты для TPS799 от Texas Instruments.
Чтобы использовать этот график, посмотрите на частоту переключения вашего импульсного стабилизатора (или любых других источников шума в вашей цепи). Затем посмотрите на PSSR линейного регулятора на этой конкретной частоте.
Затем вы можете рассчитать, какая часть шума импульсного регулятора будет удалена линейным регулятором.
Сводка
Чтобы выбрать регулятор напряжения для вашей системы, начните с предположения, что линейный регулятор может использоваться, если входное напряжение выше, чем выходное.
Только если при этом расходуется слишком много энергии, используйте понижающий импульсный стабилизатор.
Если вам нужно выходное напряжение выше, чем входное, используйте импульсный импульсный стабилизатор.
Если у вас есть ситуация, когда входное напряжение может быть выше или ниже выходного напряжения, вам нужен импульсный стабилизатор.
Наконец, если вам нужен чистый выход, но нужна энергоэффективность импульсного регулятора, используйте импульсный регулятор, а затем линейный регулятор для очистки напряжения питания.
Наконец, не забудьте скачать бесплатно PDF : Ultimate Guide to Develop and Sell Your New Electronic Hardware Product . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.Другой контент, который может вам понравиться:
4.8 5 голосов
Рейтинг статьи
Типы регуляторов напряженияи принцип работы | Статья
.СТАТЬЯ
Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается раз в месяц
Мы ценим вашу конфиденциальность
Как работает регулятор напряжения?
Стабилизатор напряжения — это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.
Регуляторы напряжения (VR) поддерживают напряжение источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного / постоянного тока, некоторые из них также могут выполнять преобразование мощности переменного / переменного или переменного / постоянного тока. В этой статье речь пойдет о регуляторах постоянного / постоянного напряжения.
Типы регуляторов напряжения: линейные и импульсные
Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД.В высокоэффективных импульсных регуляторах большая часть входной мощности передается на выход без рассеивания.
Линейные регуляторы
В линейном стабилизаторе напряжения используется устройство активного прохода (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сбрасывая ошибку до нуля.
Линейные регуляторы — это понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих регуляторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и предлагают низкий уровень шума, а также низкие пульсации выходного напряжения.
Линейным регуляторам, таким как MP2018, для работы требуются только входной и выходной конденсатор (см. Рисунок 1) . Их простота и надежность делают их интуитивно понятными и простыми устройствами для инженеров, а зачастую и очень рентабельными.
Рисунок 1: Линейный регулятор MP2018
Импульсные регуляторы
Схема импульсного регулятора обычно более сложна в разработке, чем линейный регулятор, и требует выбора значений внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательного проектирования компоновки.
Импульсные регуляторымогут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейный регулятор.
Преимущества импульсных регуляторов заключаются в том, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT.Они могут достичь эффективности более 95% в зависимости от требований приложения. В отличие от линейных регуляторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. Рисунок 2) .
Рисунок 2: Импульсный регулятор HF920
Ограничения регуляторов напряжения
Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в определенных случаях использования они рассеивают большое количество энергии.Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение на 2 В, а эффективность ограничивается 3 В / 5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN / VOUT.
Важно учитывать расчетное рассеивание мощности линейного регулятора в приложении, поскольку использование более высоких входных напряжений приводит к высокому рассеянию мощности, которое может привести к перегреву и повреждению компонентов.
Еще одним ограничением линейных регуляторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также предлагают повышающее (повышающее) и понижающее-повышающее преобразование.
Импульсные регуляторыочень эффективны, но к их недостаткам относится то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важным для конкретного приложения, поскольку шум может повлиять на работу и производительность схемы, а также на характеристики электромагнитных помех.
Топологии импульсного регулятора: понижающий, повышающий, линейный, LDO и регулируемый
Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто используют топологию с малым падением напряжения (LDO). Для импульсных регуляторов существует три распространенных топологии: понижающие преобразователи, повышающие преобразователи и повышающие-понижающие преобразователи. Каждая топология описана ниже:
Регуляторы LDO
Одной из популярных топологий линейных регуляторов является стабилизатор с малым падением напряжения (LDO).Линейные регуляторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Тем не менее, стабилизатор LDO разработан для работы с очень небольшой разницей напряжения между входными и выходными клеммами, иногда до 100 мВ.
Понижающие и повышающие преобразователи
Понижающие преобразователи(также называемые понижающими преобразователями) принимают большее входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) принимают более низкое входное напряжение и производят более высокое выходное напряжение.
Пониженно-повышающие преобразователи
Понижающий-повышающий преобразователь — это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выхода в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного напряжения.
Управление регулятором напряжения
Четыре основных компонента линейного регулятора — это проходной транзистор, усилитель ошибки, опорное напряжение и цепь обратной связи резистора. Один из входов усилителя ошибки установлен двумя резисторами (R1 и R2) для контроля процентного значения выходного напряжения.Другой вход — это стабильное опорное напряжение (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).
Для работы линейных регуляторовобычно требуется только внешний входной и выходной конденсатор, что упрощает их внедрение.
С другой стороны, импульсный стабилизатор требует большего количества компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход.Подобно линейному регулятору, есть операционный усилитель, который производит выборку выходного постоянного напряжения из сети обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.
Приложения для линейных и импульсных регуляторов
Линейные регуляторы часто используются в приложениях, которые чувствительны к затратам, чувствительны к шуму, слаботочны или ограничены в пространстве. Некоторые примеры включают бытовую электронику, такую как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который мог бы создавать нежелательный шум и влиять на работу устройства.
Более того, если проектировщики в основном заинтересованы в создании недорогого приложения, им не нужно беспокоиться о рассеивании мощности, и они могут полагаться на линейный регулятор.
Импульсные регуляторы полезны для более общих приложений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. Рисунок 3) . Например, если приложение требует большого понижающего решения, лучше подходит импульсный стабилизатор, так как линейный регулятор может создать большое рассеивание мощности, которое может повредить другие электрические компоненты.
Рисунок 3: Понижающий регулятор MPQ4430-AEC1
Каковы основные параметры микросхемы регулятора напряжения?
Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, — это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с ИС пользователя.
Другие параметры, включая ток покоя, частоту коммутации, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от приложения.
Ток покоя важен, когда приоритетом является эффективность в режимах малой нагрузки или ожидания. Если рассматривать частоту коммутации как параметр, максимальное увеличение частоты коммутации приводит к меньшим системным решениям.
Кроме того, термическое сопротивление имеет решающее значение для отвода тепла от устройства и его рассеивания по системе. Если контроллер включает в себя внутренний полевой МОП-транзистор, то все потери (проводящие и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.
Напряжение обратной связи — еще один важный параметр, который необходимо изучить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на параметры опорного напряжения. Это ограничивает нижнее выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.
Как правильно выбрать регулятор напряжения
Чтобы выбрать правильный регулятор напряжения, разработчик должен сначала понять их ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например,грамм. эффективность, производительность, стоимость), а также любые дополнительные ключевые функции, такие как индикация хорошего энергопотребления (PG) или включение управления.
После того, как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее желаемым требованиям. Таблица параметрического поиска — ценный инструмент для дизайнеров, поскольку она предлагает различные функции и пакеты, доступные для соответствия требуемым параметрам для вашего приложения.
Каждое устройство MPS поставляется с таблицей данных, в которой подробно описано, какие внешние компоненты необходимы и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции.Таблицу данных можно использовать для расчета таких значений компонентов, как выходная емкость, выходная индуктивность, сопротивление обратной связи и другие ключевые компоненты системы. Кроме того, вы можете использовать инструменты моделирования, такие как программное обеспечение DC / DC Designer или MPSmart, обращаться к примечаниям по применению или обращаться с вопросами в местный FAE.
MPS предлагает множество эффективных, компактных линейных и импульсных стабилизаторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.
Список литературы
Глоссарий по электронике
_________________________Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!
Получить техническую поддержку
Как сделать 12-вольтный регулятор напряжения
Хотя уже существуют готовые устройства для регулирования низких фиксированных напряжений постоянного тока, можно создать собственное с нуля.Стабилитроны сами по себе являются хорошими низковольтными слаботочными стабилизаторами. В более мощных источниках питания они действуют как источник опорного напряжения, управляющий одним или несколькими транзисторами, которые могут выдерживать больший ток. Чтобы проиллюстрировать, как работает стабилитрон, вы можете сделать простой стабилизатор, используя стабилитрон на 12 вольт и 5 ватт, который будет обеспечивать ток до 300 миллиампер.
Обратите внимание на полосу на корпусе стабилитрона. Это отмечает катодную сторону диода. Поскольку стабилитроны регулируют обратную проводимость, вы подключаете катод к положительной мощности.
Выключите нерегулируемый источник питания. Подключите его плюс и землю к шине питания макета.
Вставьте стабилитрон в макетную плату. Вставьте резистор на 40 Ом в макетную плату так, чтобы он соединился с катодом стабилитрона. Подключите свободный (неиспользуемый) вывод резистора к положительному нерегулируемому источнику питания от шины питания макетной платы. Подключите заземление источника питания к аноду стабилитрона. Вставьте две более длинные перемычки так, чтобы конец одного соединялся с анодом стабилитрона, а другой провод — с его катодом.А пока оставьте свободные концы этих проводов неподключенными.
Установите мультиметр на измерение постоянного напряжения. Подключите положительный (красный) вывод мультиметра к длинной перемычке, идущей от катода стабилитрона, а отрицательный (черный) вывод мультиметра к проводу, идущему от анода. Включите блок питания. Вы должны показать устойчивые 12 вольт.
Вещи, которые вам понадобятся:
- 1N5349 Стабилитрон 12 В, 5 Вт
- Резистор на 40 Ом, 1 Вт
- Макетная плата для прототипа
- Нерегулируемый источник питания 24 В постоянного тока
- Мультиметр
- Короткие кусочки перемычки 22-го калибра провод
Наконечник
Подключите держатель предохранителя последовательно к выходу регулятора и используйте предохранитель на 1/3 А.Это защитит стабилитрон в случае перегрузки или короткого замыкания регулятора. Резистор был рассчитан на работу с источником 24 В, выходом 12 В и током 300 мА. Вы можете рассчитать другие значения сопротивления по следующей формуле: R = (Vs — Vz) / Imax, где R — сопротивление в омах, Vs — напряжение нерегулируемого источника, Vz — напряжение стабилитрона, а Imax — максимальный ток, который вы хотите. Затем вам необходимо рассчитать минимальную номинальную мощность резистора по следующей формуле: P> (Vs — Vz) × Imax, где P — мощность резистора в ваттах, а Vs, Vz и Imax такие же, как и раньше.Всегда округляйте до следующего доступного значения мощности (или двух, для дополнительной безопасности). Например, если вы рассчитываете номинальную мощность 400 милливатт, резистор на ½ Вт будет безопасным, но резистор на 1 Вт будет лучше.
Общие сведения о том, как работает регулятор напряжения
Регулятор напряжения генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений его входного напряжения или условий нагрузки. Есть два типа регуляторов напряжения: линейные и импульсные.
В линейном регуляторе используется устройство активного (BJT или MOSFET) прохода (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным опорным напряжением и регулирует проходное устройство для поддержания постоянного выходного напряжения.
Импульсный стабилизатор преобразует входное постоянное напряжение в коммутируемое напряжение, подаваемое на силовой MOSFET или BJT-переключатель. Отфильтрованное выходное напряжение переключателя мощности подается обратно в схему, которая управляет временем включения и выключения переключателя питания, так что выходное напряжение остается постоянным независимо от изменений входного напряжения или тока нагрузки.
Каковы некоторые топологии импульсных регуляторов?
Существует три распространенных топологии: понижающий (понижающий), повышающий (повышающий) и понижающий-повышающий (повышающий / понижающий). Другие топологии включают обратноходовые, SEPIC, Cuk, двухтактные, прямые, полномостовые и полумостовые топологии.
Каким образом регулятор частоты коммутации влияет на конструкцию регулятора?
Более высокие частоты переключения означают, что в регуляторе напряжения можно использовать катушки индуктивности и конденсаторы меньшего размера. Это также означает более высокие коммутационные потери и больший шум в цепи.
Какие потери происходят с импульсным регулятором?
Потери возникают из-за мощности, необходимой для включения и выключения полевого МОП-транзистора, которые связаны с драйвером затвора полевого МОП-транзистора. Кроме того, потери мощности полевого МОП-транзистора возникают из-за того, что переключение из состояния проводимости в состояние непроводимости занимает конечное время. Потери также связаны с энергией, необходимой для заряда и разряда емкости затвора MOSFET между пороговым напряжением и напряжением затвора.
Каковы обычные области применения линейных и импульсных регуляторов?
Рассеиваемая мощность линейного регулятора прямо пропорциональна его выходному току для данного входного и выходного напряжения, поэтому типичный КПД может быть 50% или даже ниже.Используя оптимальные компоненты, импульсный регулятор может достичь КПД в диапазоне 90%. Однако выходной шум линейного регулятора намного ниже, чем импульсный стабилизатор с такими же требованиями к выходному напряжению и току. Обычно импульсный регулятор может управлять более высокими токовыми нагрузками, чем линейный регулятор.
Как импульсный регулятор управляет своим выходом?
Импульсным регуляторам требуется средство для изменения выходного напряжения в ответ на изменения входного и выходного напряжения.Один из подходов — использовать ШИМ, который управляет входом в соответствующий выключатель питания, который контролирует его время включения и выключения (рабочий цикл). Во время работы отфильтрованное выходное напряжение регулятора подается обратно на ШИМ-контроллер для управления рабочим циклом. Если отфильтрованный выходной сигнал имеет тенденцию к изменению, обратная связь, подаваемая на ШИМ-контроллер, изменяет рабочий цикл для поддержания постоянного выходного напряжения.
Какие проектные характеристики важны для ИС регулятора напряжения?
Среди основных параметров — входное напряжение, выходное напряжение и выходной ток.В зависимости от приложения могут быть важны другие параметры, такие как пульсирующее напряжение на выходе, переходная характеристика нагрузки, выходной шум и КПД. Важными параметрами линейного регулятора являются падение напряжения, PSRR (коэффициент отклонения источника питания) и выходной шум.
использованная литература
Загрузить средства проектирования управления питанием
.