Латр 2м схема подключения – ЛАТР 3А, вх.127,220В вых.0..250В, снабжён вольтметром и предохранителями, разъёмы компьютерные-сетевые и зажимы-банан (восстановлен и переделан из ручного стабилизатора) [лето 2011] / Блог им. Celeron / Сообщество EasyElectronics.ru

  • Home
  • Разное
  • Латр 2м схема подключения – ЛАТР 3А, вх.127,220В вых.0..250В, снабжён вольтметром и предохранителями, разъёмы компьютерные-сетевые и зажимы-банан (восстановлен и переделан из ручного стабилизатора) [лето 2011] / Блог им. Celeron / Сообщество EasyElectronics.ru

Содержание

Электронный ЛАТР своими руками

Беспомеховый автотрансформатор с электронной регулировкой напряжения
В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.
В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.
Выглядит ЛАТР так:
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки:
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Помехи в таком ЛАТРе, всё же были из — за искрения, в момент качения ролика по обмоткам.
В журнале «РАДИО», №11, 1999г на странице 40 была напечатана статья «Беспомеховый регулятор напряжения».
Схема этого регулятора из журнала:
Беспомеховый автотрансформатор с электронной регулировкой напряжения
В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.

Схема электронного ЛАТРа


Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Вот его схема:
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
На красный и чёрный провода подаём питание.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Добавляется напряжение с первой обмотки.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.
Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.
Беспомеховый автотрансформатор с электронной регулировкой напряжения

Изготовление ЛАТРа


Можно приступать к сборке регулятора.
Схему из журнала я немного доработал, и получилось вот что:
Беспомеховый автотрансформатор с электронной регулировкой напряжения
С такой схемой можно значительно повышать верхний порог напряжения. С добавлением автоматического кулера, снизился риск перегрева регулирующего транзистора.
Корпус можно взять от старого компьютерного блока питания.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Сразу нужно прикинуть порядок размещения блоков устройства внутри корпуса и предусмотреть возможность их надёжного закрепления.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Если нет предохранителя, то обязательно нужно предусмотреть другую защиту от короткого замыкания.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Высоковольтный клеммник надёжно крепим к трансформатору.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
На выход я поставил розетку для подключения нагрузки и контроля напряжения. Вольтметр можно поставить любой другой, на соответствующее напряжение, но не меньше 300 Вольт.
Беспомеховый автотрансформатор с электронной регулировкой напряжения

Понадобится


Нам понадобятся детали:
Беспомеховый автотрансформатор с электронной регулировкой напряжения
  • Радиатор охлаждения с кулером (любой).
  • Макетная плата.
  • Контактные колодки.
  • Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
  • Диодные мосты VD1 – на 4 — 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
  • VD2 — на 2 — 3 А – 700 В.
  • T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
  • VD3 – диод 1N4007 на 1A 1000 В.
  • C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
  • C2 – 100n.
  • R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
  • R2 – 910 — 2 Вт. Подбор по току базы транзистора.
  • R3 и R4 — по 1 кОм.
  • R5 – подстрочный резистор на 5 кОм.
  • NTC1 — терморезистор на 10 кОм.
  • VT1 – любой полевой транзистор. Я поставил RFP50N06.
  • M – кулер на 12 В.
  • HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.

Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Размещаем на плате детали и припаиваем их.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети.
Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали).
Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры.
У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Крепим терморезистор рядом с транзистором с применением теплопроводной пасты, как и для транзистора.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Помещаем всё в корпус на штатные места и закрепляем. Окончательно проверяем и закрываем крышку.
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Беспомеховый автотрансформатор с электронной регулировкой напряжения
Смотрите, пожалуйста, видео работы беспомехового регулятора напряжения.
Удачи вам.

Смотрите видео


sdelaysam-svoimirukami.ru

Принципиальная схема подключения ЛАТР

Для проведения лабораторных работ, а также для наладки и испытания различных устройств из области радиотехники, существует специальный прибор лабораторный автоматический трансформатор (ЛАТР). Схема подключения ЛАТР отвечает всем требованиям безопасности, с ее помощью осуществляется плавная регулировка переменного тока.

Использование трансформаторов ЛАТР

Данная конструкция трансформатора используется при лабораторных исследованиях с нестандартным напряжением. С его помощью, в ручном режиме поддерживается номинальное напряжение нагрузки. Как правило, ЛАТРы применяются при тестировании низковольтных приборов и оборудования.

Нередко, трансформаторы ЛАТР выполняют функцию блока питания в приборах, предназначенных для нагревания нихромовой нити и разрезания пенопластовых, акриловых и прочих материалов.

В трансформатор встраивается вольтметр и регулятор, изменяющий переменный ток на выходе. Коэффициент трансформации изменяется при перемещении контакта, подключающего нагрузку в обмотке ЛАТР.

Подготовка к работе и подключение

После пребывания автотрансформатора в условиях низкой температуры, его нужно выдержать в условиях будущей эксплуатации как минимум 4 часа.

Перед подключением производится осмотр корпуса трансформатора на предмет отсутствия видимых внешних повреждений. После этого, схема подключения ЛАТР предполагает подключение кабеля нагрузки и сетевого кабеля. После всех подключений, осуществляется подача к автотрансформатору питающего напряжения.

Для того, чтобы подключение было выполнено правильно, при отключенной нагрузке, на шкале прибора устанавливается половинное значение напряжения. Затем, необходимо включить вольтметр, первый щуп соединить с нулевым проводом сети, а второй щуп должен контролировать напряжение на выходе автотрансформатора. На одном контакте напряжение будет иметь нулевое, а на втором контакте половинное значение. Это означает, что прибор подключен правильно. В случае неправильного подключения, напряжение на выходе будет таким же, как и в электрической сети, в пределах 220 вольт.

При подключении ЛАТР необходимо соблюдать правила электробезопасности. Внутри прибора существует опасное значение напряжения свыше 220 вольт, при частоте 50 герц. Поэтому, работать с автотрансформатором могут только специалисты с допуском, разрешающим работать с оборудованием при напряжении до 1000 вольт.

С самим трансформатором нужно обращаться бережно, избегать ударов, перегрузок, воздействия агрессивной среды.

electric-220.ru

Лабараторный ЛАТР своими руками: схема и сборка

Трансформатор имеющий электрическую связь между обмотками называют лабораторным автотрансформатором, или ЛАТРом. Вольтаж цепи нагрузки прямо пропорционален обмотке вторичной цепи. В зависимости от конструкции, получение нужного выходного напряжения производиться подключением к соответствующим выводам или вращением ручного регулятора (рис. 1). В этой статье описывается как сделать ЛАТР в домашних условиях.

сделать ЛАТР

Подготовка материала

Для сборки ЛАТРа понадобятся следующие материалы и устройства:

  • Медная обмотка;
  • Тороидальный или стержневой магнитопровод. Можно приобрести в специализированном магазине или извлечь из испорченной техники;
  • Термоустойчивый лак;
  • Тряпичная изолента;
  • Корпус с закрепленными разъемами для подключения нагрузки и питания.

Для лабораторного ЛАТРа с переменным коэффициентом трансформации могут дополнительно понадобиться:

  1. Цифровой или аналоговый вольтметр.
  2. Поворотный механизм, включающий в себя ручку и ползунок с угольной щеткой. Он будет регулировать напряжение.

Расчет провода

Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:

  • Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
  • Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.

Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.

Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:

I = I2 – I1 = P / U2  –  P / U1 = 300 / 127  –  300 / 220  = 1 А

  • где  I, I2, I3 – токи в соответствующих участках цепи, А;
  • P – мощность, Вт;
  • U1, U2 – напряжения первичной и вторичной цепи, В.

Автотрансформатор схема

Диаметр провода рассчитываем по формуле:

d = 0,8 * √I = 1 мм.

Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².

Таблица тип провода и сечение

Коэффициент трансформации ЛАТРа n вычисляем по формуле:

n = U1 / U2 = 220 / 127 = 1,73

Для дальнейшего расчета вычисляем расчетную мощность Pр:

Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт

где  к – коэффициент, учитывающий КПД автотрансформатора.

Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:

S = √ Pр = √ 151,92 = 12,325 см²

W0 = m / S = 35 / 12,325 = 2,839

  • где  W0 – количество витков, приходящихся на 1 вольт;
  • m – 50 для стержневого и 35 для тороидального магнитопроводов.

Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:

w = W0 * U

Получаем 360, 511, 624 и 710 витков.

Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.

Процесс сборки

Для сборки регулируемого ЛАТРа выбираем тороидальный магнитопровод (рис. 2). Место наложения обмотки изолируем тряпичной изолентой.  Выводим провод для первой клеммы питания. Все последующие провода выводим не разрывая. Закрепляем первый виток на магнитопроводе и начинаем накручивать рассчитанное количество. При достижении витка соответствующего одному из выбранных напряжений, выводим петлю, и продолжаем наматывать провод. На рисунке 3 изображен процесс намотки на деревянном каркасе.

магнитопровод

Петли

После наложения обмотки лакируем ЛАТР. Наполняем емкость выбранным лаком, и окунаем в него автотрансформатор. Оставляем на длительную просушку.

После просушки помещаем автотрансформатор в корпус. Первый выведенный провод присоединяем к разъему питания. Этот разъем должен быть электрически связан с общей клеммой нагрузки, поэтому соединяем их между собой каким-нибудь проводником. Петлю выведенную для 220 В, соединяем со второй клеммой питания. Остальные провода подключаем к соответствующим клеммам вторичной цепи. На “схеме” 2 изображены выводы проводов.

выводы проводов

Для лабораторного автотрансформатора с переменным коэффициентом трансформации добавляем корпус, и делаем крепление для ручки регулятора. К ручке прикрепляем ползунок с угольной щеткой. Щетка должна плотно касаться верхней части обмотки. Помечаем область по которой будет передвигаться щетка, и в этом месте избавляемся от изоляции. Так щетка будет иметь прямой электрический контакт с вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, заменяем одной, соединенной с угольной щеткой (схема 3). При подсоединяем закрепляем вольтметр.

Если следовать написанной статье, то ЛАТР можно с легкостью сделать своими руками.

Схема сборки латра

Проверка

Что бы убедиться в бесперебойной и надежной работе устройства, выполняем следующие пункты:

  1. Подключаем автотрансформатор к сети 220 В;
  2. Проверяем на отсутствие задымления, запаха гари, сильных шумов;
  3. Вольтметром проверяем соответствие выходных значений;
  4. Через 10 — 20 минут работы отключаем ЛАТР. Проверяем не перегрелась ли обмотка.
  5. Снова включаем ЛАТР в сеть и подключаем нагрузку на длительное время.

При отсутствии проблем автотрансформатор готов к работе.

protransformatory.ru

ЛАТР (Лабораторный автотрансформатор) | Виды, описание работы

Что такое ЛАТР

Помните, мы как-то с вами рассматривали блок питания и даже делали его сами. Блок питания выдавал нам постоянное напряжение от нуля и до какого-то значения, которое, конечно же, зависит от крутизны блока питания. Согласитесь, очень удобная штука. Но есть  один минус  –  он нам выдает только постоянное напряжение.

Но, раз есть блок питания на постоянное напряжение, то должен быть блок питания и на переменное напряжение. И называется такой блок питания лабораторный автотрансформатор или сокращенно ЛАТР. Что это за вещь и с чем ее едят?

ЛАТР – это тот же трансформатор. Он преобразовывает переменное напряжение одной величины в переменное напряжение другой величины. Но вся фишка в том, что мы можем  менять при необходимости напряжение на выходе ЛАТРа.

Виды ЛАТРов

ЛАТРы бывают:

однофазные

однофазный латр

и трехфазные

трехфазный латр

Трехфазный ЛАТР – это три однофазных ЛАТРа, запиханные в один корпус.

Описание ЛАТРа РЕСАНТА

Давайте рассмотрим однофазный ЛАТР латвийского производства РЕСАНТА (читается по-русски) марки TDGC2-0.5 kVA.

Сверху наш ЛАТР выглядит вот так:

Мы видим крутилку, с помощью которой можем выставлять нужное нам напряжение.

На лицевой стороне видим какое-то подобие вольтметра переменного напряжения. На клеммы слева заводим напряжение из розетки 220 Вольт, ну а с клемм справа выводим нужное нам напряжение, покрутив крутилку в нужном направлении ;-).

Работа ЛАТРа на практике

Давайте проведем опыты с лампочкой накаливания в 95 Ватт 220 Вольт. Для этого цепляем ее к клеммам справа.

Интересно, при каком напряжении начнет светится спираль лампочки? Давайте узнаем! Крутим крутилку, пока не заметим слабое свечение лампочки.

Смотрим на шкалу крутилки. 35 Вольт!

А вы знаете, что в США  в розетке 110 Вольт? Интересно, как бы светилась наша лампочка в США? Выставляем 110 Вольт.

Светится, как говорится, в пол накала.

А вот теперь посмотрите, как она светится при 220 Вольтах

Дальше повышать напряжение нет смысла. Лампочку жалко.

Если хотите выставить напряжение с большой точностью, то конечно же, здесь не обойтись без мультиметра. Для этого ставим крутилку мультиметра  на положение измерения переменного напряжения

Цепляемся и меряем переменное напряжение. Заодно подгоняем с помощью крутилки ЛАТРа  нужное напряжение

Техника безопасности при работе с ЛАТРом

Хочется также добавить пару слов о технике безопасности. Есть ЛАТРы без гальванической развязки. Это означает, что фазный провод из сети идет прямо на выход ЛАТРа. Схема ЛАТРа без гальванической развязки выглядит вот так:

В этом случае на выходной клемме ЛАТРа может появиться напряжение сети 220 Вольт с вероятностью 50/50. Все зависит от того, как вы воткнете сетевую вилку ЛАТРа в розетку 220 Вольт.

Если присмотреться к схемотехническому изображению на самой лицевой панели ЛАТРа, то можно увидеть, что клемма “Х” и “х”  (те, которые два нижних) связаны между собой простым проводом:

То есть если на клемме “Х” фаза, то и на клемме “х” тоже будет фаза! Вы ведь не будете каждый раз замерять фазу в розетке, чтобы воткнуть правильно вилку? Поэтому БУДЬТЕ крайне ОСТОРОЖНЫ! Старайтесь не задевать голыми руками выходные клеммы ЛАТРа!

В принципе я задевал и ничего со мной такого не произошло. Дело оказалось в том, что у меня деревянный пол, который почти является диэлектриком. Замерял напряжение между мной и фазой – вышло около 40 Вольт. Поэтому я и не чувствовал эти 40 Вольт. Если бы я взялся одной рукой за батарею или встал бы голыми ногами на землю, а другой рукой взялся бы за выход “х” ЛАТРа, то меня тряхануло бы очень сильно, так как через меня прошли бы полноценные 220 Вольт.

Разделительный трансформатор и ЛАТР

Есть также более безопасные виды ЛАТРов. В своем составе они имеют развязывающий трансформатор. Схема такого ЛАТРа выглядит примерно вот так:

Как мы видим, фазный провод изолирован от выходных клемм такого ЛАТРа, благодаря трансформатору, принцип работы которого вы можете прочитать в этой статье. В этом случае нас может тряхануть, если мы на выходе  ЛАТРа с помощью крутилки выставим высокое напряжение и возьмемся сразу за два выходных провода ЛАТРа.

Заключение

ЛАТР – прибор очень полезный.  Я бы посоветовал начинающему электронщику ЛАТР на 500 ВА. Такие ЛАТРы очень компактные и удобные. Работает ЛАТР по принципу трансформатора. Чем меньше витков во вторичной обмотке, тем меньше напряжение  на выходе. Когда мы крутим крутилку, мы добавляем витки, а следовательно и напряжение. Принцип работы трансформатора подробно рассмотрен в этой статейке. Думаю, говорить про применение ЛАТРа нет смысла, так как он используется везде, где надо понизить переменное напряжения или даже чуточку его повысить.

Где купить ЛАТР

ЛАТР выгоднее всего купить либо в ближайшем радиомагазине, либо все-таки заказать в российском интернет-магазине, так как тяжелые товары из Китая обойдутся дороже. Можете присмотреть по этой ссылке.

где купить латр

www.ruselectronic.com

ЛАТР 3А, вх.127,220В вых.0..250В, снабжён вольтметром и предохранителями, разъёмы компьютерные-сетевые и зажимы-банан (восстановлен и переделан из ручного стабилизатора) [лето 2011] / Блог им. Celeron / Сообщество EasyElectronics.ru

Старики знают, что в ту эпоху, когда коммунизм ещё только строился, напряжение в электрических сетях было не 220VAC как сейчас, а по разному (обычно 110..127VAC, в редких новостройках 220VAC) и очень сильно плавало (не то что сейчас) — тогда без стабилизаторов напряжения было никак не обойтись (сейчас-то мы обходимся).

В основе всех стабилизаторов напряжения используются автотрансформаторы. Однако, первые стабилизаторы напряжения регулировались не автоматически, а вручную — фактически, это были просто голые автотрансформаторы, включенные на повышение напряжения (в обратном включении, чем привычные нам ЛАТРы). Но конечно, такие «ручные стабилизаторы» были очень неудобными: приходилось следить за ними, как рыбак за поплавком — ну, точно не меньше! Как же в таком случае расслабиться и посмотреть телевизор? Если каждые полминуты нужно глядеть на маленький экранчик аналогового вольтметра, соображать, и подкручивать сверху ручку (мать мне рассказывала, что ей доставалось от деда, когда она забывала «покрутить эту ручку» — это случалось незавидно регулярно)… Естественно, как только в продаже появились «автоматические стабилизаторы», которые «глядели» на вольтметр сами, — тогда «ручные стабилизаторы» (в количестве 1шт.) были тут же вытеснены в подвалы и забыты (почти на пол века, пока до них не добрался я).

Найдя в подвале древний дедовский «ручной стабилизатор напряжения» — было принято единственно верное решение: разобрать и применить… В итоге, получилось вот такое винтажное чудо:

Далее, будет много фоток (все кликабельны и ведут на полноразмерное изображение)…

Описание и характеристики изделия

  • Название: Лабораторно-бытовой автотрансформатор регулируемый однофазный
  • Входы и выходы реализованы в разных видах:
    есть стандартные гнёзда-зажимы «банан» (обычные для ЛАТРа),
    и есть удобные в быту «сетевые компьютерные разъёмы IBM» (ВХОД: Штекер сетевой IBM 3pin монтажный, c предохранителем; ВЫХОД: Гнездо сетевое IBM 3pin монтажное).
    Примечание: в отличие от советских ЛАТРов, здесь каждый вход и выход представлены не тройкой, а только парой контактов — что, однако, не снижает функциональности…
  • Максимальная нагрузка (пропускаемая мощность): до 3А, в любом из контуров.
  • Первичный и вторичный контуры защищены плавкими предохранителями (итого, две штуки).
    Примечание: Предохранитель входного контура FUSE1 вмонтирован во входной «сетевой штекер IBM» (с левой стороны корпуса). Замечу, что ВХОД через гнездо-зажим «банан» — также скоммутирован через этот предохранитель (для этого разъём IBM был немного «допилен»)…
    Примечание: Обычно, ток во вторичном (выходном) контуре — больше. Поэтому выходной плавкий предохранитель FUSE2 (с правой стороны корпуса) сделан более доступным для замены, в удобном держателе, поскольку вероятность выхода его из строя — больше…
  • Индикация режимов работы: две лампочки (неоновая подсветка на тумблере питания; и лампочка накаливания, подключённая непосредственно к катушке автотрансформатора) и аналоговый вольтметр выходного напряжения.
  • Переключатель диапазонов входного напряжения питания 127/220VAC — реализован в виде ползункового переключателя (с утопленной клавишей, во избежание случайного переключения).
Осмотрим прибор снаружи


Примечание: От долгой и трудной жизни, металлический корпус повело — поэтому опорные ножки пришлось доделать, чтобы корпус стоял на резине, а не на выступающем металле. Трёхножечная конструкция, оказалось, обладает интересными свойствами: конечно, это гораздо менее устойчиво, чем 4 ножки; но зато, можно совершенно не задумываться и не подбирать высоту ножек — конструкция автобалансируется на трёх точках опоры.

Схема принципиальная ЛАТРа

Органы управления, Порядок работы и Техника Безопасности

1. Вначале, тумблер питания на передней панели должен быть в состоянии «выключено». Питающее напряжение на входных клеммах, очень желательно, должно отсуствовать — в целях техники безопасности.

Внимание: Следует иметь в виду, что входные гнёзда-зажимы «банан» запараллелены с «сетевым штекером IBM», ещё до тумблера питания. (Входы разных типов — равнозначны!) Поэтому если вы подключаете электрически безопасный кабель питания ко ВХОДУ через Штекер сетевой IBM — то высокое напряжение тут же появляется и на входных гнёздах-зажимах «банан» (а последние имеют оголённые металлические контакты)!

Примечание: Тумблер питания (S1 на схеме принципиальной) — двухполюсный. Поэтому пока S1 не включен — напряжение на ВЫХОДЕ устройства полностью отсутствует.

2. Неоновая подсветка на тумблере питания — это индикатор готовности ЛАТРа к работе. Она загорается сразу же, как только ко ВХОДУ ЛАТРа подключают питающее напряжение — ещё до включения тумблера питания.

3. Далее, следует проверить и установить правильное положение «переключателя диапазонов входного напряжения 127/220VAC» (S2 на схеме принципиальной): в Украине/России — следует установить в положение 220V; а Америке/Европе — установить в положение 127V (на случай, если я туда поеду вместе со своим ЛАТРом, случайно). И только после этого допускается включать тумблер питания!

4. Обычно, на этом этапе, Нагрузка к выходам ЛАТРа — не подключена! Поскольку мы не знаем какое выходное напряжение сейчас выставлено ползунком…

5. Можно включать прибор: После включения тумблера питания S1, электрический ток поступает на катушку автотрансформатора — загорается индикатор «рабочего режима»: лампочка накаливания за зелёным стёклышком над вольтметром, подключённая к низковольтному отводу от катушки трансформатора (простой и надёжный индикатор).
Если выходной предохранитель FUSE2 в норме, то сейчас преобразованное напряжение поступает на ВЫХОДы ЛАТРа — стрелочный вольтметр (на передней панели) покажет величину выходного напряжения.

6. Настройте требуемое выходное напряжение «регулировочной ручкой», расположенной сверху прибора…

7. Наконец, подключите к ЛАТРу выходную Нагрузку.
Примечание: Выходные гнёзда-зажимы «банан» также запараллелены с выходным «сетевым гнездом IBM», и включены после выходного предохранителя FUSE2 — они совершенно равнозначны.

8. Можно тестировать поведение Нагрузки при изменяющемся напряжении питания: крутим «регулировочную ручку», смотрим как изменяются показания напряжения на вольтметре (удобно, когда в ЛАТРе есть встроенный вольтметр!)…

8. По завершению работы, первым делом отключаем тумблер питания S1 — зелёная лампочка «рабочего режима» погасает (автотрансформатор обесточен, выходное напряжение отключено), а красная неонка («готов к работе») на тумблере питания — останется светить.
Примечание: такие цветовые кодировки индикаторов выбраны удачно: зелёный — «нормально работаю»; красный — «внимание».

А теперь заглянем внутрь прибора (вскрытие)


Все провода, идущие к трансформаторной катушке — разъёмны без пайки! Это необходимо из-за особенностей строения корпуса (высокая и узкая бочка) — чтобы разбирать и собирать устройство без проблем.

На верхнем фото заметно: Кроме обычных клеммных «кольцевых наконечников под винт M4» (одеваемых на гнёздо-зажим «банан») — для других четырёх проводов, которые идут от трансформатора, но не соединены с выходами непосредственно (не идут под винт гнезда «банан»), я использовал «кабельный наконечник-соединитель» (пара ST-040/B и ST-050/B) в разноцветных термоусадках (жёлтый, белый, зелёный, красный). (Примечание: цвет здесь ключ — в зависимости от назначения проводов, чтобы не перепутать их при коммутации — потому что механически: разъёмы одинаковы!).

В изначальной конструкции «ручного стабилизатора напряжения» многие узлы, представленные на этих фотографиях, отсутствовали или были реализованы иначе:

  • Входной разъём отсутствовал: так как это бытовой прибор, то питание поступало по обычному гибкому силовому проводу, жёстко закреплённому внутри корпуса, и оканчивавшемуся бытовой сетевой вилкой.
  • В качестве выходной розетки: присутствовала странная конструкция, с двумя втулочками под штырьки вилки, без подпружиненных контактов (бюджетный совковый вариант минирозетки), на пластмассовой основе.
    В эту же конструкцию был встроен «переключатель диапазонов входного напряжения 127/220VAC»: реализованный как перекидной контакт клеммника, фиксируемый винтом; и всё накрывалось декоративной крышечкой, также фиксируемой винтом (что интересно: в этой крышечке была проделана щёлочка, через которую можно было наблюдать текущее положение, в котором зафиксирован контакт переключателя) — винтажная эстетика… 🙂
  • За давностью лет, все провода в приборе (как и внешний силовой, так и внутренние коммутационные) — совершенно износились и подлежали безусловной замене.
  • Но главное: сама катушка автотрансформатора — была целая, без обрывов и замыканий. Механизм подстроечного ползунка — также присутствовал в полной мере (пришлось только его почистить и отрегулировать).
  • Вольтметр отсутствовал — в корпусе зияла дыра (панельный вольтметр я потом подобрал отдельно — он почти подошёл по размерам ниши: хотя видно, чуток больше, чем стоявший в конструкции изначально — крепления пришлось переделать и обернуть корпус вольтметра изолирующей фторопластовой плёнкой).
  • Зелёного стёклышка «индикатора рабочего режима» — не было (это уже я доделал, и лампочку закрепил). Вместо него был: металлический козырёк (чтобы свет не бил в глаза пользователю), из под которого в щёлку светила лампочка накаливания (почему-то не закреплённая) — подобная конструкция, например, использовалась в подсветке заднего номерного знака старых советских автомобилей (тренд того времени)

За сим, пока всё…

we.easyelectronics.ru

Латр 1м схема подключения — как сделать автотрансформатор своими руками?

Электронный ЛАТР


В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.
В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.
Выглядит ЛАТР так:

Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки:

Помехи в таком ЛАТРе, всё же были из — за искрения, в момент качения ролика по обмоткам.
В журнале «РАДИО», №11, 1999г на странице 40 была напечатана статья «Беспомеховый регулятор напряжения».
Схема этого регулятора из журнала:

В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.

Схема электронного ЛАТРа

Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.

Вот его схема:

Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.

На красный и чёрный провода подаём питание.

Добавляется напряжение с первой обмотки.
Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.

Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.
Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.

Понадобится

Нам понадобятся детали:

  • Радиатор охлаждения с кулером (любой).
  • Макетная плата.
  • Контактные колодки.
  • Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
  • Диодные мосты VD1 – на 4 — 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
  • VD2 — на 2 — 3 А – 700 В.
  • T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
  • VD3 – диод 1N4007 на 1A 1000 В.
  • C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
  • C2 – 100n.
  • R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
  • R2 – 910 — 2 Вт. Подбор по току базы транзистора.
  • R3 и R4 — по 1 кОм.
  • R5 – подстрочный резистор на 5 кОм.
  • NTC1 — терморезистор на 10 кОм.
  • VT1 – любой полевой транзистор. Я поставил RFP50N06.
  • M – кулер на 12 В.
  • HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.

Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе.
Размещаем на плате детали и припаиваем их.

Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети.
Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали).
Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.
После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры.
У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм.
Крепим терморезистор рядом с транзистором с применением теплопроводной пасты, как и для транзистора.
Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах.
Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт.
Помещаем всё в корпус на штатные места и закрепляем. Окончательно проверяем и закрываем крышку.
Смотрите, пожалуйста, видео работы беспомехового регулятора напряжения.
Удачи вам.

Расчет провода

Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:

  • Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
  • Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.

Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.

Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:

I = I2 – I1 = P / U2 – P / U1 = 300 / 127 – 300 / 220 = 1 А

  • где I, I2, I3 – токи в соответствующих участках цепи, А;
  • P – мощность, Вт;
  • U1, U2 – напряжения первичной и вторичной цепи, В.

Диаметр провода рассчитываем по формуле:

d = 0,8 * √I = 1 мм.

Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².

Коэффициент трансформации ЛАТРа n вычисляем по формуле:

n = U1 / U2 = 220 / 127 = 1,73

Для дальнейшего расчета вычисляем расчетную мощность Pр:

Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт

где к – коэффициент, учитывающий КПД автотрансформатора.

Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:

S = √ Pр = √ 151,92 = 12,325 см²

W0 = m / S = 35 / 12,325 = 2,839

  • где W0 – количество витков, приходящихся на 1 вольт;
  • m – 50 для стержневого и 35 для тороидального магнитопроводов.

Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:

w = W0 * U

Получаем 360, 511, 624 и 710 витков.

Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.

Процесс сборки

Для сборки регулируемого ЛАТРа выбираем тороидальный магнитопровод (рис. 2). Место наложения обмотки изолируем тряпичной изолентой. Выводим провод для первой клеммы питания. Все последующие провода выводим не разрывая. Закрепляем первый виток на магнитопроводе и начинаем накручивать рассчитанное количество. При достижении витка соответствующего одному из выбранных напряжений, выводим петлю, и продолжаем наматывать провод. На рисунке 3 изображен процесс намотки на деревянном каркасе.

После наложения обмотки лакируем ЛАТР. Наполняем емкость выбранным лаком, и окунаем в него автотрансформатор. Оставляем на длительную просушку.

После просушки помещаем автотрансформатор в корпус. Первый выведенный провод присоединяем к разъему питания. Этот разъем должен быть электрически связан с общей клеммой нагрузки, поэтому соединяем их между собой каким-нибудь проводником. Петлю выведенную для 220 В, соединяем со второй клеммой питания. Остальные провода подключаем к соответствующим клеммам вторичной цепи. На “схеме” 2 изображены выводы проводов.

Для лабораторного автотрансформатора с переменным коэффициентом трансформации добавляем корпус, и делаем крепление для ручки регулятора. К ручке прикрепляем ползунок с угольной щеткой. Щетка должна плотно касаться верхней части обмотки. Помечаем область по которой будет передвигаться щетка, и в этом месте избавляемся от изоляции. Так щетка будет иметь прямой электрический контакт с вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, заменяем одной, соединенной с угольной щеткой (схема 3). При подсоединяем закрепляем вольтметр.

Если следовать написанной статье, то ЛАТР можно с легкостью сделать своими руками.

Вместо ЛАТРа

Вместо ЛАТРа

Предлагаю схему регулируемого источника переменного напряжения. Указанный регулятор можно использовать вместо лабораторного автотрансформатора (ЛАТРа) для регулирования освещения лампами накаливания, температуры жала паяльника, скорости вращения электродвигателя и т.д. Особенностью данной схемы является использование в качестве регулирующего элемента мощного биполярного транзистора VT1, который выполняет функцию переменного резистора, включенного последовательно с нагрузкой. Предлагаемый регулятор дает возможность регулировать напряжение как при активной, так и при реактивной нагрузке. К недостаткам регулятора можно отнести выделение большого количества тепла регулирующим транзистором и проблему его отвода. Преимущества такого технического решения перед регуляторами на тиристорах или на ЛАТРе следующие:
— отсутствие помех в электросеть от его работы;
— получение на выходе синусоидального напряжения;
— малые габариты и небольшой вес;
— простота схемного решения и не дефицитность деталей.

Диодный мост VD2…VD5 обеспечивает протекание прямого тока через транзистор VT1 при любом полупериоде переменного напряжения сети. Трансформатор Т1 — мощностью 12…15 Вт со вторичным напряжением 6…10 В. Это напряжение выпрямляется диодным мостом VD6 и сглаживается конденсатором С1. Изменяя сопротивление переменного резистора R2, мы тем самым регулируем базовый ток транзистора VT1, а следовательно — и его сопротивление в цепи переменного тока.

Сопротивление R1, включенное в базу транзистора VT1 — токоограничивающее. Диод VD1 — защитный. Он предотвращает попадание на базу транзистора VT1 напряжения отрицательной полярности. Напряжение на выходе регулятора контролируют вольтметром PV1. Как видно из схемы, ток нагрузки (потребителя) зависит от величины управляющего напряжения на базе транзистора. Изменяя это напряжение, мы тем самым управляем током его коллектора, а следовательно — и величиной тока нагрузки. В крайнем нижнем (по схеме) положении движка резистора R2 транзистор VT1 будет полностью открыт, и напряжение на нагрузке — максимальное. В крайнем верхнем положении движка транзистор закрыт, ток через нагрузку — минимальный, и напряжение на выходе регулятора равно нулю.

Конструкция регулятора и его детали. Монтаж — навесной. Диоды — большой мощности (Д245, Д246, Д247, Д248, Д223 и т.д.), и поэтому при данном токе не требуют теплоотводов. Транзистор VT1 установлен на радиатор площадью не менее 250 см2. Выпрямительные диоды (блоки) VD6 — КЦ 405 с любой буквой. Переменное сопротивление R2 — обязательно проволочное ППБ15, ППБЗ мощность не менее 2,5 Вт. Вольтметр переменного тока — на напряжение 250…300 В. Если возникнет необходимость увеличения мощности нагрузки, то потребуется замена регулирующего транзистора VT1 и диодов VD2…VD5 на более мощные. В крайнем случае, можно включать несколько транзисторов в параллель, стараясь подбирать их с одинаковыми коэффициентами усиления h31э. Транзистор КТ856 позволяет подключать нагрузку 150 Вт, КТ834 — 200 Вт, КТ847 — 250 Вт.Соответственно необходимо увеличивать площадь радиаторов или устанавливать небольшой вентилятор для обдува. Диод VD1 тоже необходимо заменить на более мощный с номинальным током 1 А.

Внимание! Данный источник гальванически связан с электросетью 220 В. Корпус источника желательно сделать из диэлектрика, а на ось резистора R2 одеть хорошо изолированную ручку. Необходимо соблюдать меры безопасности при его наладке — все изменения в конструкцию вносить только в отключенном от сети состоянии. …

Литература
1. Горшков Б.И. Элементы радиоэлектронных устройств: Справочник. — М.: Радио и связь, 1988.
2. Боровской В.П. Справочник по схемотехнике для радиолюбителя. — Технiка, 1987.

В. БАШКАТОВ
Донецкая обл.
г. Горловка-46
Радиолюбитель №2, 1998

Тиристор вместо ЛАТРа

В ремонтной и любительской практике широко используется ЛАТР (лабораторный автотрансформатор регулируемый). При отсутствии ЛАТРа его можно заменить тиристорным регулятором напряжения, электрическая схема которого показана на рис. 49.

Рис. 49. Электрическая схема тиристорного регулятора.

Схема позволяет регулировать напряжение на активной нагрузке в переделах от 0 до 220 В. Мощность нагрузки может быть любой в пределах от 25 до 1000 Вт, а если тиристоры Д1 и Д2 установить на радиаторы, мощность можно увеличить до 1,5 кВт.

Основные элементы регулятора — тиристоры Д1, Д2, включенные встречно друг другу и параллельно нагрузке. Они поочередно пропускают ток то в одном, то в другом направлении.

При включении регулятора в сеть в первый момент оба тиристора закрыты, и конденсаторы заряжаются через резистор R5.

Напряжение на нагрузке устанавливают с помощью перемещенного резистора R5, который совместно с конденсаторами C1, C2 образует фазосдвигающую цепочку. Тиристоры управляются импульсами, формируемыми динисторами Д3, Д4. В некоторый момент, который определяется сопротивлением включенной в цепь части резистора R5, откроется один из динисторов (какой именно, зависит от полярности полупериода). Через него потечет ток разряда соединенного с ним конденсатора, поэтому вслед за динистором откроется и соответствующий тиристор. Через тиристор и соответственно через нагрузку потечет ток. В момент смены знака полупериода тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй динистор и второй тиристор.

Особенность этой схемы в том, что в ней используются оба полупериода переменного тока и к нагрузке подводится полная, а не половинная мощность.

svyazist-izh.ru

Самодельный сварочный аппарат из ЛАТР 2. Схема и описание

Данный самодельный сварочный аппарат из ЛАТР 2 построен на базе девяти амперного ЛАТР 2 (лабораторный регулируемый автотрансформатор) и в его конструкции предусмотрена регулировка сварочного тока. Наличие в конструкции сварочного аппарата диодного моста позволяет производить сварку постоянным током.

Схема регулятора тока для сварочного аппарата

Режим работы сварочного аппарата регулируется переменным резистором R5. Тиристоры VS1 и VS2 открываются каждый в свой полупериод попеременно на определенный промежуток времени благодаря фазосдвигающей цепи, построенной на элементах R5, С1 и С2.

В итоге появляется возможность изменять на первичной обмотке трансформатора входное напряжение от 20 до 215 вольт. В результате трансформации на вторичной обмотке появляется пониженное напряжение, позволяющее с легкостью поджечь сварочную дугу на клеммах X1 и X2 при сварке переменным током и  на клеммах X3 и X4 при сварке постоянным током.

Подключение сварочного аппарата к электросети производится обыкновенной штепсельной вилкой. В роли включателя SA1 можно использовать спаренный автомат на 25А.

Переделка ЛАТР 2 под самодельный сварочный аппарат

Сперва с автотрансформатора  удаляют защитный кожух, электросъемный контакт и крепление. Далее на существующую обмотку 250 вольт наматывают хорошую электроизоляцию, к примеру, стеклоткань, сверху которой укладывают 70 витков вторичной обмотки. Для вторичной обмотки желательно выбрать медный провод с площадью сечения около 20 кв. мм.

В случае если нет провода подходящего сечения, можно сделать намотку из нескольких проводов с общей площадью сечения 20 кв.мм. Видоизмененный ЛАТР2 монтируют в подходящий самодельный корпус имеющий вентиляционные отверстия. Там же необходимо  установить плату регулятора, пакетный выключатель, а так же клеммы для Х1, Х2 и Х3, Х4.

В случае отсутствия ЛАТР 2, трансформатор можно сделать самодельный, намотав первичную и вторичную обмотки на сердечник из трансформаторной стали. Сечение сердечника должно быть примерно 50 кв. см. Первичная обмотка наматывается проводом ПЭВ2 диаметром 1,5мм и содержит 250 витков, вторичная такая же которая наматывается на ЛАТР 2.

На выходе вторичной обмотки подключают диодный мост из  мощных выпрямительных диодов. Вместо указанных на схеме диодов можно применить диоды Д122-32-1 или 4 диода ВЛ200 (электровозные). Диоды для охлаждения необходимо установить на самодельные радиаторы с площадью не менее 30 кв. см.

Еще существенным моментом является выбор кабеля для сварочного аппарата. Для данного сварочника  необходимо применить медный многожильный кабель в резиновой изоляции с сечением не менее 20 кв.мм. Необходимо два куска кабеля по 2 метра длинной. Каждый необходимо хорошо обжать клеммными наконечниками для подключения к сварочному аппарату.

 

www.joyta.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *