Стробоскоп на 555 таймере схема – Помощник для пугания унитазов или светодиодный стробоскоп на таймере 555.

  • Home
  • Разное
  • Стробоскоп на 555 таймере схема – Помощник для пугания унитазов или светодиодный стробоскоп на таймере 555.

Помощник для пугания унитазов или светодиодный стробоскоп на таймере 555.

РадиоКот >Схемы >Светотехника >Бегущие огни и световые эффекты >

Помощник для пугания унитазов или светодиодный стробоскоп на таймере 555.

Всем кто пользовался стробоскопом для подсветки пляшущих и немного подвыпивших гостей известен странный на первый взгляд эффект от его работы.
После непродолжительного действия устройства многие из пляшущих начинают отлучаться в сторону мест общего пользования и оттуда раздаются характерные для пугания унитазов звуки.
Раньше стробоскопы делали на импульсных лампах типа ИФК разной мощности, но с развитием светодиодной оптики задача значительно упрощается.

Вот такой 10 ватный светодиод LUSTRON X3, БЕЛЫЙ 5700К 10,5.В*1,05А, 900 ЛМ однажды попал ко мне в руки.
Выбор схемы управления много времени не занял, их существует превеликое множество на любой вкус и пристрастие.
Больше других понравилась схема на таймере 555, и что не маловажно он был в закромах.
Кстати на РАДИОКОТЕ в разделе статьи этот таймер основательно расписан по полочкам и приводить описание работы схемы нет никакой необходимости.

Вот собственно и всё описание для изготовления «помощника для пугания унитазов».
Далее представлены схема и фото устройства перед установкой в корпус.

Файлы:
Печатная плата в формате SL 5.0.

Вопросы, как всегда в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

Мощный светодиодный стробоскоп на таймере NE555. Схема и описание

Стробоскоп является генератором вспышек света очень короткой продолжительности. Ниже приводится схема мощного светодиодного стробоскопа построенного на таймере NE555.

Сперва опишем сам генератор коротких импульсов. Основа генератора — таймер NE555 включенный по типовой схеме. Питание стробоскопа осуществляется от стабилизированного источника постоянного напряжения в 20 вольт. Для работы таймера это многовато, поэтому в цепь питания таймера добавлен стабилитрон на 5,6 вольт и фильтрующий конденсатор С3.

Скорость зарядки конденсатора С2 определяется сопротивлением резистора R2. Зарядный ток протекает через резистор R2, конденсатор С2 и диод D1. Время зарядки конденсатора — это время свечения светодиодов. Период заряда можно немного изменить, подобрав соответствующее сопротивление резистора R2. После того как конденсатор С2 зарядится до значения внутреннего делителя, сигнал на выходе таймера переходит в противоположное состояние и светодиоды гаснут.

В то же время на выводе 7 таймера NE555 низкий уровень напряжения и через переменный резистор R8 конденсатор С2 начинает разряжаться. Время разряда конденсатора С2 определяется   сопротивлением переменного резистора. После того как заряд на конденсаторе уменьшится до определенного уровня цикл повторяется.

Прямоугольный сигнал в вывода 3 таймера поступает на пару транзисторов Т1, Т2. Транзисторы управляют блоком светодиодов. Резисторы R5, R6 ограничивают максимальный ток, протекающий через светодиоды (расчет см. здесь). Схему можно запитать, например, от блока питания ноутбука.

http://www.pctun.czechian.net/strobak/strobak.html

Теория и практика применения таймера 555.Часть вторая.

РадиоКот >Статьи >

Теория и практика применения таймера 555.Часть вторая.

В этой части мы продолжим ездить по вашим мозгам на таймере 555, однако уже с практической точки зрения — рассмотрим конкретные схемы включения микросхемы.

Итак,
Схема 1:

Эта штуковина начинает работать (пищать) если по каким-то причинам станет вдруг темно. То есть, на фоторезистор LDR1 перестанет попадать свет или световой поток уменьшится до некоего критического уровня.

Схема 2:

Эта схема предназначена для раздражения слухового нерва в том случае, если напряжение на входе «Контроль» упадет ниже 9 вольт.

Схема 3:

Простейший вид узла сигнализации. Если датчик S2 замкнется, на выходе таймера появится высокий уровень и останется таковым, даже если датчик вернется в исходное состояние. Вернуть низкий уровень на выход микросхемы можно кнопкой «Сброс».

Схема 4:

Аналогична Схеме 1, правда можно подстраивать частоту тона пищания резистором R2.

Схема 5:

Метроном. Издает мерное тикание, чтобы начинающие музыканты не сбивались с ритма, ну или хорошо спали. Частота тиков подстраивается резистором R1.

Схема 6:

10-минутный таймер. Запускается нажатием на кнопку «Сброс-запуск», при этом загорается светодиод HL2, например — зеленый. По истечении временного интервала, загорится светодиод HL1, например — красный. Интервал можно подстроить резистором R4.

Схема 7:

Триггер Шмидта. Полезная вещь, если вам необходимо получить прямоугольные импульсы из синусоидального сигнала, даже искаженного и зашумленного.

Схема 8:

Генератор повышенной точности и стабильности. Частота подстраивается резистором R1. Диоды — любые германиевые. Можно также применить диоды Шоттки.

Схема 9:

Детектор пропущенных импульсов. Может пригодиться. Транзистор можно заменить на отечественный КТ3107.

Схема 10:

Твухтональная сирена. Занятная схема для экспериментов с включением двух таймеров сразу.

Ну пока все.
Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

Полицейский стробоскоп своим руками | Каталог самоделок

Вообще, стробоскопический эффект можно получить, скажем, внедрением обычного мультивибратора. Но эффект такой простой мигалки будет отличаться от полицейской тем, что в последней лампы вспыхивают несколько раз, а затем переключаются.

Теперь взгляните на схему:

схема

В схеме имеются 2 микросхемы. Одна из них – это любимый многими таймер 555.

таймер 555

Таймер работает в этой схеме низкочастотный генератор импульсов прямоугольного вида. Регулировать частоту этих импульсов, следовательно, и частоту вспышек ламп, можно путем подбора конденсатора C1 и резистора R1, который является подстроечным для более удобной регулировки.

низкочастотный генератор

Таймер производит последовательность импульсов прямоугольного вида, которые поступают на вход микросхемы CD4017 (отечественный аналог – К176ИЕ8).

CD4017

Микросхема CD4017 является счетчиком-дешифратором и имеет 10 выводов, из которых в единичный момент времени может открываться только один. Каждый входной импульс перемещает логическую единицу последовательно с одного выхода на другой.

Итак, схема разработана таким образом, что она объединяет в один канал импульсы с трех выводов.

схема разработана таким образом

Когда к этому единому каналу подключается нагрузка, скажем, светодиод, то получаются 3 последовательные вспышки по количеству входных импульсов.

Используя тот же принцип, можно подключить еще один светодиод, объединив следующие 3 выхода микросхемы.

Вообще, для двух аналогичных нагрузок (ламп) можно получить до 5 последовательных вспышек для каждой лампочки, поскольку количество выходов у микросхемы 10.

количество выходов у микросхемы 10

При усилении выходов микросхемы дополнительными транзисторами появляется возможность подключать более мощные нагрузки, скажем, галогенные лампочки. Или же к выходу можно подключить электромагнитное реле и управлять уже сетевыми нагрузками.

схема

Плата разработана для транзисторов такого типа, как КТ819.

КТ819

Транзисторы этого типа способны проводить довольно значительные токи, то есть к имеющейся схеме можно подключить галогенные лампочки небольшой мощности. Но также возможно использование и других транзисторов с обратной проводимостью, только необходимо обращать внимание на цоколь и допустимый ток через них.

Таймер 555 служит только для получения входных импульсов и лишь уменьшает количество компонентов. Вместо него можно установить обычный мультивибратор.

мультивибратор

Диапазон питающих напряжений для этой схемы будет составлять от 4,5 до 16 В. Более высокое напряжение подавать не рекомендуется, поскольку максимально допустимое напряжение питания для таймера 555 составляет 18 В.

Даташит к таймеру

стробоскоп

Прикрепленные файлы: СКАЧАТЬ

АВТОР: АКА КАСЬЯН.


 

Теория и практика применения таймера 555. Часть первая.

РадиоКот >Статьи >

Теория и практика применения таймера 555. Часть первая.

Наверное нет такого радиолюбителя (Мяу, и его кота! — Здесь и далее прим. Кота), который не использовал бы в своей практике эту замечательную микросхему. Ну а уж слышали о ней так точно все.

Её история началась в 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (

The IC Time Machine).
На тот момент это была единственная «таймерная» микросхема доступная массовому потребителю. Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 35 лет практически каждый уважающий себя производитель полупроводников считал свои долгом выпустить свою версию этой микросхемы, в том числе и по более современным техпроцессам. Например, компания Motorola выпускает CMOS версию MC1455. Но при всем при этом в функциональности и расположении выводов никаких различий у всех этих версий нет. Все они полные аналоги друг друга.
Наши отечественные производители тоже не остались в стороне и выпускают эту микросхему под названием КР1006ВИ1.

А вот список заморских производителей, которые выпускают таймер 555 и их коммерческие обозначения:

Производитель

Название микросхемы

ECG Philips

ECG955M

Exar

XR-555

Fairchild

NE555

Harris

HA555

Intersil

SE555/NE555

Lithic Systems

LC555

Maxim

ICM7555

Motorola

MC1455/MC1555

National

LM1455/LM555C

NTE Silvania

NTE955M

Raytheon

RM555/RC555

RCA

CA555/CA555C

Sanyo

LC7555

Texas Instruments

SN52555/SN72555

В некоторых случаях указано два названия. Это означает, что выпускается две версии микросхемы — гражданская, для коммерческого применения и военная. Военная версия отличается большей точностью, широким диапазоном рабочих температур и выпускается в металлическом или керамическом корпусе. Ну и дороже, разумеется.

Начнем с корпуса и выводов.

Микросхема выпускается в двух типах корпусов — пластиковом DIP и круглом металлическом. Правда, в металлическом корпусе она все же выпускалась — сейчас остались только DIP-корпуса. Но на случай, если вам вдруг достанется такое счастье, привожу оба рисунка корпуса. Назначения выводов одинаковые в обоих корпусах. Помимо стандартных, выпускается еще две разновидности микросхем — 556 и 558. 556 — это сдвоенная версия таймера, 558 — счетверенная.

Функциональная схема таймера показана на рисунке прямо над этим предложением.
Микросхема содержит около 20 транзисторов, 15 резисторов, 2 диода. Состав и количество компонентов могут несущественно меняться в зависимости от производителя. Выходной ток может достигать 200 мА, потребляемый — на 3- 6 мА больше. Напряжение питания может изменяться от 4,5 до 18 вольт. При этом точность таймера практически не зависит от изменения напряжения питания и составляет 1% от расчетного. Дрейф составляет 0,1%/вольт, а температурный дрейф — 0,005%/С.

Теперь мы посмотрим на принципиальную схему таймера и перемоем ему кости, вернее ноги — какой вывод для чего нужен и что все это значит.

Итак, выводы (Мяу! Это он про ноги…):

1. Земля. Особо комментировать тут нечего — вывод, который подключается к минусу питания и к общему проводу схемы.

2. Запуск. Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, см. функциональную схему) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.

3. Выход. Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс.

4. Сброс. При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и в Африке reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод настоятельно рекомендуется подключить к плюсу питания, пока в нем нет необходимости.

5. Контроль. Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.

6. Останов. Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние (Мяу! Тихой паники?!) низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.

7. Разряд. Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

8. Плюс питания. Как и в случае с выводом 1 особо ничего не скажешь. Напряжение питания таймера может находиться в пределах 4,5-16 вольт. У военных версий микросхемы верхний диапазон находится на уровне 18 вольт.

Впитали? Едем дальше.
Большинство таймеров нуждаются во времязадающей цепочке, обычно состоящей из резистора и конденсатора. Таймер 555 не исключение. Давайте посмотрим на диаграмму работы микросхемы.

Итак, предположим, что мы подали питание на микросхему. Вход находится в состоянии высокого уровня, на выходе — низкий уровень, конденсатор С разряжен. Все спокойно, все спят. И тут БАХ — мы подаем серию прямоугольных импульсов на вход таймера. Что происходит?
Первый же импульс низкого уровня переключает выход таймера в состояние высокого уровня. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резистор R. Все то время пока конденсатор заряжается, выход таймера остается во включенном состоянии — на нем сохраняется высокий уровень напряжения. Как только конденсатор зарядится до 2/3 напряжения питания, выход микросхемы выключается и на нем появляется низкий уровень. Транзистор T6 открывается и конденсатор С разряжается.
Однако есть два нюанса, которые показаны на графике пунктирными линиями.
Первый — если после окончания заряда конденсатора на входе сохраняется низкий уровень напряжения — в таком случае выход остается активным — на нем сохраняется высокий уровень до тех пор, пока на входе не появится высокий уровень. Второй — если мы активируем вход Сброс напряжением низкого уровня. В этом случае выход сразу же выключится, не смотря на то, что конденсатор все еще заряжается.
Так, лирическую часть закончили — перейдем к суровым цифрам и расчетам. Как же нам определить время, на которое будет включаться таймер и номиналы RC цепочки, необходимые для задания этого времени? Время, за которое конденсатор заряжается до 63,2% (2/3) напряжения питания называется временной константой, обозначим её буковкой t. Вычисляется это время потрясающей по своей сложности формулой. Вот она: t = R*C, где R — сопротивление резистора в МегаОм-ах, С — емкость конденсатора в микроФарад-ах. Время получается в секундах.

К формуле мы еще вернемся, когда будем подробно рассматривать режимы работы таймера. А сейчас пока посмотрим на простенький тестер для этой микросхемы, который запросто скажет вам — работает ваш экземпляр таймера или нет.

Если после включения питания мигают оба светодиода — значит все хорошо и микросхема во вполне рабочем состоянии. Если же хотя бы один из диодов не горит или наоборот — горит постоянно, значит такую микросхемы можно спустить в унитаз с чистой совестью или вернуть назад продавцу, если вы её только что купили. Напряжение питания — 9 вольт. Например, от батареи «Крона».

Теперь рассмотрим режимы работы этой микросхемы.
Собственно говоря, режимов у нее две штуки. Первый — моностабильный мультивибратор. Моностабильный — потому что стабильное состояние у такого мультивибратора одно — выключен. А во включенное состояние мы его переводим временно, подав на вход таймера какой-либо сигнал. Как уже отмечалось выше, время, на которое мультивибратор переходит в активное состояние, определяется RC цепочкой. Эти свойства могут быть использованы в самых разнообразных схемах. Для запуска чего-либо на определенное время или наоборот — для формирования паузы на заданное время.

Второй режим — это генератор импульсов. Микросхема может выдавать последовательность прямоугольных импульсов, параметры которых определяются все той же RC цепочкой. (Мяу! Хочу цепочку. На хвост. Ну или браслетик. Антистатический.)
Все-таки Кот у нас — зануда.
Начнем сначала, то есть с первого режима.

Схема включения микросхемы показана на рисунке. RC цепочка включена между плюсом и минусом питания. К соединению резистора и конденсатора подключен вывод 6 — Останов. Это вход компаратора №1. Сюда же подключен вывод 7 — Разряд. Входной импульс подается на вывод 2 — Запуск. Это вход компаратора №2. Совершенно простецкая схема — один резистор и один конденсатор — куда уж проще? Для повышения помехоустойчивости можно подключить вывод 5 на общий провод через конденсатор емкостью 10нФ.
Итак, в исходном состоянии, на выходе таймера низкий уровень — около нуля вольт, конденсатор разряжен и заряжаться не хочет, поскольку открыт транзистор Т6. Это состояние стабильное, оно может продолжаться неопределенно долгое время. При поступлении на вход импульса низкого уровня, срабатывает компаратор №2 и переключает внутренний триггер таймера. В результате на выходе устанавливается высокий уровень напряжения. Транзистор Т6 закрывается и начинает заряжаться конденсатор С через резистор R. Все то время, пока он заряжается, на выходе таймера сохраняется высокий уровень. Таймер не реагирует ни на какие внешние раздражители, буде они поступают на вывод 2. То есть, после срабатывания таймера от первого импульса дальнейшие импульсы не оказывают никакого действия на состояние таймера — это очень важно. Так, что там у нас происходит то? А, да — заряжается конденсатор. Когда он зарядится до напряжения 2/3Vпит, сработает компаратор №1 и в свою очередь переключит внутренний триггер. В результате на выходе установится низкий уровень напряжения, и схема вернется в свое исходное, стабильное состояние. Транзистор Т6 откроется и разрядит конденсатор С.

Время, на которое таймер, так сказать «выходит из себя», может быть от одной миллисекунды до сотен секунд.
Считается оно так: T=1.1*R*C
Теоретически, пределов по длительности импульсов нет — как по минимальной длительности, так и по максимальной. Однако, есть некоторые практические ограничения, которые обойти можно, но сначала стоит задуматься — нужно ли это делать и не проще ли выбрать другое схемное решение.
Так, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С — 95пФ. Можно ли меньше? В принципе — да. Но при этом, если еще уменьшить сопротивление резистора — схема начнет трескать слишком много электричества. Если уменьшить емкость С, то всякие паразитные емкости и помехи могут существенно повлиять на работу схемы.
С другой стороны, максимальное значение резистора примерно равно 15Мом. Здесь ограничение накладывает ток, потребляемый входом Останов (около 120нА) и ток утечки конденсатора С. Таким образом, при слишком большом значении резистора таймер просто никогда не выключится, если сумма токов утечки конденсатора и тока входа превысит 120 нА.
Ну а что касается максимальной емкости конденсатора, то дело не столько в самой емкости, сколько в токе утечки. Понятно, что чем больше емкость, тем больше ток утечки и тем хуже будет точность таймера. Поэтому, если таймер будет использоваться для больших временных интервалов, то лучше пользоваться конденсаторами с малыми токами утечки — например, танталовыми.

Перейдем ко второму режиму.

В эту схему добавлен еще один резистор. Входы обоих компараторов соединены и подключены к соединению резистора R2 и конденсатора. Вывод 7 включен между резисторами. Конденсатор заряжается через резисторы R1 и R2.
Теперь посмотрим, что же произойдет, когда мы подадим питание на схему. В исходном состоянии конденсатор разряжен и на входах обоих компараторов низкий уровень напряжения, близкий к нулю. Компаратор №2 переключает внутренний триггер и устанавливает на выходе таймера высокий уровень. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резисторы R1 и R2.

Когда напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 в свою очередь переключает триггер и выключает выход таймер — напряжение на выходе становится близким к нулю. Транзистор Т6 открывается и конденсатор начинает разряжаться через резистор R2. Как только напряжение на конденсаторе опустится до 1/3 напряжения питания, компаратор №2 опять переключит триггер и на выходе микросхемы снова появится высокий уровень. Транзистор Т6 закроется и конденсатор снова начнет заряжаться… фууу, чет у меня голова закружилась уже.
Короче говоря, в результате всего этого шаманства, на выходе мы получаем последовательность прямоугольных импульсов. Частота импульсов, как вы вероятно уже догадались, зависит от величин C, R1 и R2. Определяется она по формуле:

Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2.
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;

Ну, с теоретической частью вроде бы покончили. В следующей части рассмотрим конкретные примеры включения таймера 555 в различных схемах и для самого разнообразного использования.
Если у вас еще остались вопросы — их можно задать тут.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

Отправить ответ

avatar
  Подписаться  
Уведомление о