Включение и выключение одной кнопкой без фиксации схема: Включение и выключение одной кнопкой без фиксации схема. Включение и выключение одной кнопкой

  • Home
  • Разное
  • Включение и выключение одной кнопкой без фиксации схема: Включение и выключение одной кнопкой без фиксации схема. Включение и выключение одной кнопкой

Содержание

Включение и выключение одной кнопкой без фиксации схема. Включение и выключение одной кнопкой

Иногда возникает необходимость управлять той или иной нагрузкой всего одной кнопкой. Кнопки бывают двух типов с фиксацией и без. Если использовать кнопки без фиксации, например для включения светодиода, то при нажатии светодиод засветится, а при отпускании потухнет.

Приведенная схема проста до безобразия и состоит из трех транзисторов, две из которых обратной проводимости. Работает она по следующему принципу — при первом нажатии светодиод засветится, при повторном — потухнет.

Областей применения такой простой электронной кнопки очень много, от простых фонариков до мощных систем коммутации.

Как это работает

В начальный момент, когда на схему подается питание, все три транзистора закрыты, одновременно через цепочку резисторов R1 и R2 заряжается электролитический конденсатор C1, напряжение на нем равно напряжению питания. При нажатии на кнопку положительный сигнал с конденсатора поступает на базу транзистора VT3 отпирая его, по открытому переходу этого транзистора напряжение поступает на базу транзистора VT2, в следствии чего он также открывается.

Нагрузка, в нашем случае светодиод, тоже активируется, еще во время срабатывания транзистора VT3.

Эта часть схемы представляет из себя триггерную защелку. Транзистор VT3 открывает VT2, а тот открываясь подает напряжение на базу транзистора VT3 удерживая его в открытом состоянии.

В таком состоянии схема может находится бесконечно долгое время. Притом кнопку можно просто нажать и отпустить, а не удерживать в нажатом состоянии.

Открывающийся транзистор VT2 открывает также и транзистор VT1. В этом состоянии у нас все три транзистора открыты. Когда VT1 открыт, через его открытый переход и резистор R2, конденсатор C1 будет разряжаться, отсюда можно сделать вывод, что когда транзисторы открыты, конденсатор разряжен.

При повторном нажатии кнопки база транзистора VT3 оказывается подключенной к минусовой обкладке конденсатора C1, на базе ключа напряжение в районе 0,7 вольт, и в следствии заряда конденсатора оно просаживается и он запирается. С запиранием транзистора VT3, конденсатор опять начинает заряжаться в штатном режиме, через ранее указанные резисторы.

Коммутацию нагрузки осуществляет транзистор VT3, его можно взять помощней, например bd139, в этом случае у нас появится возможность подключать к схеме более мощные нагрузки, ну или можно усилить сигнал с выхода нашей кнопки дополнительным транзистором.

Использованные в схеме транзисторы не критичны, можно взять любые малой и средней мощности соответствующей проводимости. Номиналы других компонентов схемы можно отклонять в ту или иную сторону на 30%.

Схема не прожорливая, от источника питания в 5 вольт ток потребления без нагрузки всего 850 микроАмпер, так, что смело можно задействовать в качестве выключателя ну скажем в карманном фонарике.

С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.

▌Механическая кнопка
Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.

Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.

▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.

Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.

▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…

Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим:) Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.

▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.

▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.

Правда тут надо учитывать то, что если нога может отдать 10мА,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.

Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.

▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.

Одна кнопка и включает и выключает питание.

Как работает:

При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.

Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.

Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.

Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.

Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.

Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.

Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.

Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.

Вот такая простая, но прикольная схема. Вот На сходном принципе действия.

Радиолюбителю Электропитание

Включать и выключать только одной кнопкой

В радиоэлектронике возникают ситуации, когда на одну или несколько нагрузок потребуется только одна кнопка, которая будет включать и выключать питание. Такой подход имеет преимущества перед размещением в корпусе двух кнопок или объемных тумблеров. Также, есть возможность применить стильные и компактные сенсорные кнопки. Или использовать включение и выключение одной кнопкой в случаях, когда кнопка в наличии всего одна. Будет рассмотрено две схемы, в разных исполнениях и с разными вариантами питания. Оба варианта рабочие и проверенные. Если монтаж компонентов производился грамотно и без замен деталей, то работать всё будет исправно.

Вкл. и выкл. одной кнопкой – схема на триггере

Питание схемы составляет от 7 В до 35 В. Все детали недорогие, а повторение схемы под силу людям, далекими от радиоэлектроники. Кнопку можно использовать любую, даже от звонков, лишь бы могла соединить и разъединить контакт. Держать её можно сколько угодно, так как триггер сработает только при разъединении контакта. Соответственно, в следующее положение он войдет при новом нажатии.

Вкл. и выкл. одной кнопкой – схема на таймере 555

Еще одна примечательная схема построена на таймере 555. Примечательна она тем, что питающее напряжение используется сетевое, а нагрузок можно подключить несколько, равно, как и кнопок. На схеме указаны места последующих подключений.

Будь то старые или новые гаджеты, они ломаются, и смартфоны не являются исключением. Простого падения на твердую поверхность достаточно, чтобы нанести ущерб.

Смартфоны являются хрупкими по природе. Даже если они не ломаются, они подвержены многим проблемам. Одной из таких проблем, которая очень распространена среди пользователей Android, является случай, когда кнопка питания перестает работать.

Подумайте об этом, кнопка питания — кнопка, которую мы нажимаем бесчисленное количество раз в день — перестает работать. Этого достаточно, чтобы создать хаос в нашей жизни. Когда снова и снова нажимаешь кнопку — что можно ожидать — она перестанет работать в один прекрасный день.
Это происходит не со всеми, но те, кто сталкиваются с этой проблемой знают, как она осложняет работу телефона. Вот несколько решений для этой раздражающей проблемы.

1. Автоматизация функции включения/выключения с Gravity Screen.

Gravity Screen является удивительным приложением. Использование различных датчиков телефона включает и выключает экран. Функция, такая как сенсор датчика кармана или стола, предполагает обнаружение, когда вы держите ваш телефон, а когда нет. Она учится понимать, когда вы собираетесь использовать телефон, и в соответствии с этим, включает или выключает его, честно говоря, она работает всегда, но точность может варьироваться от устройства к устройству.

Если вам не особенно интересно то, как приложение работает, и вы просто хотите, чтобы оно включало и выключало телефон, тогда вперед, скачивайте его, и оно превосходно будет работать без чрезмерного разряда батареи, если вы настроили его правильно.

2. Moto display

Приложение ограничено тем, что его могут использовать только владельцы устройств Motorola, но мы должны были добавить его в список, потому что оно просто потрясающее.
В Moto display можно видеть уведомления не включая телефон. Но его можно использовать не только для просмотра уведомлений. Просто не трогайте телефон в течение нескольких секунд, а затем возьмите его, и вы увидите как включится Moto display. В этот момент вы можете провести пальцем вниз по направлению к значку блокировки, чтобы разблокировать его. Отлично работает.


Moto dispay не блокирует телефон, это нужно делать вручную. Но так как кнопка питания не работает, мы рекомендуем установить время режима сна телефона к минимуму, то есть 15 секунд.

3. Перевести Вкл/Выкл питания на кнопку громкости

Да, вы правильно прочитали, есть приложение и для этого тоже, и самое лучшее, что оно работает, даже если телефон не рутирован. Это приложение называется Volume Unlock Power Button Fix, то есть “громкость разблокировать, клавишу питания пофиксить”. Это очень и очень длинное имя, но оно полностью определяет цель приложения.

Прежде всего, установите его на телефоне. Теперь откройте приложение и предоставьте ему права администратора. Это необходимо, в противном случае, приложение не будет работать. Откройте приложение и включите «Enable Volume Unlock» и «Screen off», используя переключатели справа. Если вы включили оба варианта, то вы сможете выключить экран на панели уведомлений и включить его с помощью кнопки громкости.
В настройках приложения, вы также можете включить такие функции, как автоматический запуск при загрузке и авто включение/отключение, которое будет работать в установленном временном интервале. Например, установив время с 06:00 до 04:00, приложение будет функционировать только в течение этого времени.
Мы использовали его в течение 2 дней, и не нашли каких-либо ненужных разрядов батареи. Это удивительное приложение.

Включение и выключение нагрузки одной кнопкой своими руками

Многие бытовые электроприборы, будь то музыкальные центры, телевизоры, различные светильники, включаются и выключаются путём нажатия одной и той же кнопки. Нажал один раз – прибор включился, нажал ещё раз – выключился. В радиолюбительской практике часто возникает необходимость реализовать этот же принцип. Такие кнопки часто используют при построении самодельных усилителей в изящных корпусах, устройство с этим принципом включения и выключения выглядит уже куда более совершенным, напоминая заводской прибор.

Схема устройства


Схема включения и выключения нагрузки одной кнопкой представлена ниже. Она проста как валенок, не содержит дефицитных компонентов и запускается сразу. Итак, схема:

Её ключевое звено – популярная микросхема таймер NE555. Именно она регистрирует нажатие клавиши и устанавливает на выходе либо логическую 1, либо 0. Кнопка S1 – любая кнопка на замыкание без фиксации, т.к. через неё практически не протекает ток, требований к кнопке нет практически никаких. Я взял первую попавшуюся, советскую 60-х годов.

Конденсатор С1 и резистор R3 подавляют дребезг контактов кнопки, С1 лучше всего применить неполярный керамический или плёночный. Светодиод LED1 индицирует о состоянии нагрузки – светодиод горит, нагрузка включена, погашен – выключена. Транзистор Т1 коммутирует обмотку реле, здесь можно применить любой маломощный транзистор структуры NPN, например, BC547, КТ3102, КТ315, BC184, 2N4123. Диод, стоящий параллельно обмотке реле, служит для подавления импульсов самоиндукции, возникающих в обмотке. Можно применять любой маломощный диод, например, КД521, 1N4148. Если нагрузка потребляет небольшой ток, можно подключать её непосредственно к схеме вместо обмотки реле. В таком случае стоит поставить транзистор помощней, например, КТ817, а диод можно исключить.

Материалы



Для сборки схемы понадобится:
  • Микросхема NE555 – 1 шт.
  • Транзистор BC547 – 1 шт.
  • Конденсатор 1 мкФ -1 шт.
  • Резистор 10 кОм – 2 шт.
  • Резистор 100 кОм – 1 шт.
  • Резистор 1 кОм – 2 шт.
  • Кнопка без фиксации – 1 шт.
  • Диод КД521 – 1 шт.
  • Светодиод на 3 в. – 1 шт.
  • Реле – 1 шт.

Кроме того, необходим паяльник, флюс, припой и умение собирать электронные схемы. Электронные компоненты стоят почти копейки и продаются в любом магазине радиодеталей.

Сборка устройства


В первую очередь, необходимо изготовить печатную плату. Она выполняется методом ЛУТ, файл к статье прилагается. Отзеркаливать перед печатью не нужно. Метод ЛУТ неоднократно описывался в интернете, научиться ему не так уж и трудно. Несколько фотографий процесса:
Скачать плату:






Если под рукой нет принтера, нарисовать печатную плату можно маркером или лаком, ведь она достаточно небольшая. После сверления отверстий плату нужно залудить, чтобы предотвратить окисление медных дорожек.
После изготовления платы можно приступать к запаиванию в неё деталей. Сначала запаиваются мелкие компоненты – резисторы, диоды. После этого конденсаторы, микросхемы и всё остальное. Провода можно как впаять напрямую в плату, так и соединить их с платой с помощью клеммников. Контакты питания и контакты OUT для подключения реле я вывел через клеммники, а кнопку впаял непосредственно в плату на паре проводков.

Таким образом, эту плату можно встроить в какой-нибудь прибор, будь то усилитель, самодельный светильник, или что-либо иное, требующего включения и выключения одной кнопкой без фиксации. В сети есть множество других подобных схем, построенных на советских микросхемах, транзисторах, однако именно эта схема с использованием микросхемы NE555 зарекомендовала себя как самая простая и одновременно с этим надёжная.


Смотрите видео


Принцип работы наглядно показан на видео.

Включение и выключение устройства кнопкой без фиксации

Нередко при конструировании различных электронных или электрических устройств необходимо управлять большой нагрузкой, либо эти устройства потребляют достаточно большой ток и их нужно как-то включать. В такой ситуации применение выключателей и кнопок становится не совсем нецелесообразным ввиду выгорания их контактов под действием больших токов. Особенно это касается выключателей и кнопок китайского производства. Указанное на них значение тока они не способны долговременно выдерживать. Помимо этого есть еще один недостаток, который выливается в наводки помех на чувствительные части схемы. Так может быть, если выключатель (кнопка) расположен на передней панели корпуса и силовой провод к нему проходит вдоль чувствительных участков схемы.

Для решения подобных проблем можно применить схемное решение, которое позволяет включать и выключать устройство или нагрузку одной слаботочной кнопкой без фиксации.

Схема электрическая принципиальная

Особенностью данной схемы является то, что питается она от сети переменного тока 220В 50Гц, это отличает ее от схемы, представленной в статье «Управление нагрузкой одной кнопкой». Для этого устройства не нужен дополнительный источник питания и это явный плюс.

Данную схему разработал радиолюбитель из Сербии Миле Славкович (Apex Audio).

Сетевое напряжение понижается с помощью гасящего конденсатора C5 и выпрямляется диодным мостом VD5-VD8. Постоянной нагрузкой (как я понимаю) для гасящего конденсатора C5 служит всегда открытый транзистор VT2.

Параметрический стабилизатор R7VD2 обеспечивает питание микросхемы D1 стабильным напряжением +12В. Емкость C3 сглаживает его пульсации.

Обмоткой реле K1 управляет транзистор VT1, который открывается высоким уровнем на выходе триггера (вывод 11). На обмотку подается напряжение +27В, которое обеспечивает стабилитрон VD3.

Диод VD1 защищает элементы схемы от явления самоиндукции в момент обесточивания обмотки реле.

Триггер построен на четырех логических элементах 2И-НЕ, собранных в корпусе микросхемы CD4011. Элементы D1.1 и D1.2 собственно представляют сам триггер, меняющий свое состояние при замыкании ключа S1. Сигнал с триггера через резистор R2 поступает на инвертор D1.4, выход которого через сопротивление R6 управляет базой транзистора VT1. Также с выхода D1.4 сигнал через сопротивление R3 поступает на вход инвертора D1.3, выход которого подключен к светодиоду LED1. Уровень сигнала на светодиоде будет инвертирован относительно сигнала на транзисторе VT1, то есть когда протекает ток через обмотку реле, то светодиод обесточен.

Емкости C1 и C2 уменьшают так называемый «дребезг» кнопки S1.

Компоненты схемы

Все номиналы компонентов устройства включения и выключения кнопкой без фиксации приведены на схеме, но у меня есть некоторые рекомендации.

Так, например резистор R10 я советую установить мощностью не менее 0.5Вт, так как при запуске на нем падает более 4 Вольт (рассеивается 0,48Вт), вернее это то, что успевает измерить цифровой вольтметр. После запуска на нем постоянно падает 2,5 Вольта (рассеивается 0,19Вт). При первом запуске резистор мощностью 0,25 вышел из строя мгновенно, и я установил в параллель два резистора 68Ом 0,25Вт.

Конденсатор C5 пленочный, рассчитанный на 400В и имеет емкость 1мкФ.

Стабилитрон ZF12 был заменен на 1N4742A, а ZY27 на1N4750A.

Транзистор BC550 спокойно меняется на BC547 или BC546 (я поставил BC547).

Транзистор BD241 я заменил на TIP41C. Данный транзистор неплохо нагревается. Для комфорта на него можно установить небольшой теплоотвод, но и без него устройство работает.

Реле на 24В. Я применил TRA3L-24VDC-S-2Z.

В качестве кнопок я применяю кнопки без фиксации типа представленной ниже на фото. Такой тип кнопок имеет минимальный «дребезг».

Внимание! Данное устройство не имеет гальванической развязки с сетью переменного тока ~220В. При включенном в сеть устройстве запрещено прикасаться к его элементам.

Управление низковольтной нагрузкой

По умолчанию, схема рассчитана на включение и выключение устройства, питающегося от сети переменного тока 220В. То есть, к клеммам «220V AC OUT» подключается коммутируемое устройство (лампа, усилитель звуковой частоты, блок питания и т.д.). Для управления любой другой нагрузкой, например низковольтной, необходимо немного подкорректировать печатную плату таким образом, чтобы к контактной группе реле не подходили дорожки с сетевым напряжением (смотри схему ниже).

Печатнаю плату можно скачать обратившись по E-mail: [email protected] (к Юрию).

Включение-выключение питания одной кнопкой, в том числе и нескольких устройств (видео)

 Если перед вами стоит задача включать и выключать устройство или несколько устройств одной кнопкой, и вы в поисках такого варианта, то вы зашли к нам явно по адресу. Здесь вашему вниманию будет предложено несколько схем реализации подобных проектов на различных микросхемах, а значит с различными принципами действия, но с одним и тем же результатом. Что же, давайте обо всем по порядку!

Управление одним устройством (включение-выключение) от одной кнопки (NE555)

Первую схему мы не особо будем «мусолить» так как схема не является нашей оригинальной идеей, кроме того эта схема итак уже разобрана везде и всюду в интернете. Мы посмотрели, что на этот счет есть даже видео. Если есть желание, то можете поискать.

По сути это схема работает на микросхеме таймере NE555. Да, микросхемка уже легендарная и сыскавшая себе славу. Здесь из этого самого таймера организовали мультивибратор. Итак, если у таймера создать обратную связь, то получается мультивибратор. А эта самая связь как раз и создается посредством нажатия на кнопку. В итоге таймер входит в режим мультивибратора и с определенной периодичность начинает выдавать на выходе импульсы то единичку, то нолик. В итоге именно этот импульс и будет управляющим для силовой и индикационной цепочки на транзисторе с реле и светодиоде.

 Какие здесь могут быть минусы. Ну, главный минус, что таймер так и остается таймером, то есть его не особо интересует сколько раз вы нажали на кнопку, ему более интересно как быстро зарядиться или разрядиться конденсатор в 1 МкФ. То есть, возможно проскакивания включения выключения, не явное и неточное срабатывание. Некоторые радиолюбители называют это «дребезжанием контактов», но к этому термину это не имеет никакого отношения. Это штатная работа таймера, не более того. Итак, с этим вариантом все понятно.

Управление несколькими или одним устройством (включение-выключение) от одной кнопки (К155ИЕ7)

Теперь вариант на счетчике. Здесь принцип такой. Есть двоичный счетчик на микросхеме К155ие7, на его выходе с подачей входного сигнала меняется потенциал. Опять же это либо единичка, либо нолик. Всего четыре выхода. Первый выход на ножке 3 меняет свой потенциал при каждом 1 нажатии, второй на ножке 2 при каждом 2 и т.д. В итоге что получается? Выходит то, что одним нажатием можно управлять не только одним устройством, а сразу 4, то есть согласно количеству выходов. Здесь главное сигнал слабого тока преобразовать в сигнал высокого тока. Именно для этого на нужную нам ножку-выход достаточно «повесить» силовой модуль, собранный на оптопаре 4n25, транзисторе и реле.

 Также кроме управления одним, двумя, тремя или четырьмя устройствами можно будет применить такую схему и в качестве кодового ключа, то есть кодового замка.  Здесь можно поставить второй счетчик и в зависимости от высоких потенциалов на определенных ножках обеспечить питание для срабатывания управляющего запорного элемента замка. Мы не будем развивать эту тему, так как по этому поводу лучше сделать свою, тематическую статью.  Можно лишь подытожить, что такая схема не намного сложнее первой при этом работает от одного нажатия четко и без отклонений, да к тому же может управлять сразу питанием 4 устройств. Именно этого нам и надо было добиться!
 А теперь кому лень было все это читать, разбираться, предлагаем посмотреть видео, в котором как раз и описано все тоже самое.

Включение выключение нескольких устройств с помощью микроконтроллеров (на Ардуино)

 Ну и еще одна вариация работать с целой «плеядой» различных устройств, это использование микроконтроллеров.  Один из наиболее популярных и при этом понятных устройств это Адруино, на микроконтроллере Amtel 328P. Микроконтроллеры в состоянии решать поставленные задачи куда более «гибко», чем аналоговые схемы, особенно если учитывать возможность настройки и перенастройки. Поэтому один раз освоив микроконтроллеры, вы просто по наитию начнете все делать на них, так как цена на сегодняшний момент на микроконтроллеры сопоставима с аналоговыми элементами. Итак, о включении выключении нескольких устройств на микроконтроллере в статье «Ардуино управляет несколькими устройствами»

Видео о включении выключении одной кнопкой нескольких устройств (одного, двух, трех, четырех)

cxema.org — Управление нагрузкой одной кнопкой без фиксации

Управление нагрузкой одной кнопкой без фиксации

Иногда возникает необходимость управлять той или иной нагрузкой всего одной кнопкой. Кнопки бывают двух типов с фиксацией и без. Если использовать кнопки без фиксации, например для включения светодиода, то при нажатии светодиод засветится, а при отпускании потухнет.

Приведенная схема проста до безобразия и состоит из трех транзисторов, две из которых обратной проводимости. Работает она по следующему принципу — при первом нажатии светодиод засветится, при повторном —  потухнет.

Областей применения такой простой электронной кнопки очень много, от простых фонариков до мощных систем коммутации.

Как это работает

В начальный момент, когда на схему подается питание, все три транзистора закрыты, одновременно через цепочку резисторов R1 и R2 заряжается электролитический конденсатор C1, напряжение на нем равно напряжению питания. При нажатии на кнопку положительный сигнал с конденсатора поступает на базу транзистора VT3 отпирая его, по открытому переходу этого транзистора напряжение поступает на базу транзистора VT2, в следствии чего он также открывается. Нагрузка,  в нашем случае светодиод, тоже активируется, еще во время срабатывания транзистора VT3.

Эта часть схемы представляет из себя триггерную защелку. Транзистор VT3 открывает VT2, а тот открываясь подает напряжение на базу транзистора VT3 удерживая его в открытом состоянии.

В таком состоянии схема может находится бесконечно долгое время. Притом кнопку можно просто нажать и отпустить, а не удерживать в нажатом состоянии.

Открывающийся транзистор VT2 открывает также и транзистор VT1. В этом состоянии у нас все три транзистора открыты. Когда VT1 открыт, через его открытый переход и резистор R2, конденсатор C1 будет разряжаться, отсюда можно сделать вывод, что когда транзисторы открыты, конденсатор разряжен.

При повторном нажатии кнопки база транзистора VT3 оказывается подключенной к минусовой обкладке конденсатора C1, на базе ключа напряжение в районе 0,7 вольт, и в следствии заряда конденсатора оно просаживается и он запирается. С запиранием транзистора VT3, конденсатор опять начинает заряжаться в штатном режиме, через ранее указанные резисторы.

Коммутацию нагрузки осуществляет транзистор VT3, его можно взять помощней, например bd139, в этом случае у нас появится возможность подключать к схеме более мощные нагрузки, ну или можно усилить сигнал с выхода нашей кнопки дополнительным транзистором.

Использованные в схеме транзисторы не критичны, можно взять любые малой и средней мощности соответствующей проводимости. Номиналы других компонентов схемы  можно отклонять в ту или иную сторону на 30%.

Схема не прожорливая, от источника питания в 5 вольт ток потребления без нагрузки всего 850 микроАмпер, так, что смело можно задействовать в качестве выключателя ну скажем в карманном фонарике.

Печатные платы тут:

Включение выключение нагрузки кнопкой без фиксации. Включение-выключение питания одной кнопкой, в том числе и нескольких устройств. Как это работает

С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.

▌Механическая кнопка
Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.

Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.

▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.

Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.

▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…

Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим:) Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.

▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.

▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.

Правда тут надо учитывать то, что если нога может отдать 10мА,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.

Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.

▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.

Одна кнопка и включает и выключает питание.

Как работает:

При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.

Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.

Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.

Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.

Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.

Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.

Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.

Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.

Вот такая простая, но прикольная схема. Вот На сходном принципе действия.

Если перед вами стоит задача включать и выключать устройство или несколько устройств одной кнопкой, и вы в поисках такого варианта, то вы зашли к нам явно по адресу. Здесь вашему вниманию будет предложено несколько схем реализации подобных проектов на различных микросхемах, а значит с различными принципами действия, но с одним и тем же результатом. Что же, давайте обо всем по порядку!

Управление одним устройством (включение-выключение) от одной кнопки (NE555)

Первую схему мы не особо будем «мусолить» так как схема не является нашей оригинальной идеей, кроме того эта схема итак уже разобрана везде и всюду в интернете. Мы посмотрели, что на этот счет есть даже видео. Если есть желание, то можете поискать.

По сути это схема работает на микросхеме таймере NE555. Да, микросхемка уже легендарная и сыскавшая себе славу. Здесь из этого самого таймера организовали мультивибратор. Итак, если у таймера создать обратную связь, то получается мультивибратор. А эта самая связь как раз и создается посредством нажатия на кнопку. В итоге таймер входит в режим мультивибратора и с определенной периодичность начинает выдавать на выходе импульсы то единичку, то нолик. В итоге именно этот импульс и будет управляющим для силовой и индикационной цепочки на транзисторе с реле и светодиоде.

Какие здесь могут быть минусы. Ну, главный минус, что таймер так и остается таймером, то есть его не особо интересует сколько раз вы нажали на кнопку, ему более интересно как быстро зарядиться или разрядиться конденсатор в 1 МкФ. То есть, возможно проскакивания включения выключения, не явное и неточное срабатывание. Некоторые радиолюбители называют это «дребезжанием контактов», но к этому термину это не имеет никакого отношения. Это штатная работа таймера, не более того. Итак, с этим вариантом все понятно.

Управление несколькими или одним устройством (включение-выключение) от одной кнопки (К155ИЕ7)

Теперь вариант на счетчике. Здесь принцип такой. Есть двоичный счетчик на микросхеме К155ие7, на его выходе с подачей входного сигнала меняется потенциал. Опять же это либо единичка, либо нолик. Всего четыре выхода. Первый выход на ножке 3 меняет свой потенциал при каждом 1 нажатии, второй на ножке 2 при каждом 2 и т.д. В итоге что получается? Выходит то, что одним нажатием можно управлять не только одним устройством, а сразу 4, то есть согласно количеству выходов. Здесь главное сигнал слабого тока преобразовать в сигнал высокого тока. Именно для этого на нужную нам ножку-выход достаточно «повесить» силовой модуль, собранный на оптопаре 4n25, транзисторе и реле.

Также кроме управления одним, двумя, тремя или четырьмя устройствами можно будет применить такую схему и в качестве кодового ключа, то есть кодового замка. Здесь можно поставить второй счетчик и в зависимости от высоких потенциалов на определенных ножках обеспечить питание для срабатывания управляющего запорного элемента замка. Мы не будем развивать эту тему, так как по этому поводу лучше сделать свою, тематическую статью. Можно лишь подытожить, что такая схема не намного сложнее первой при этом работает от одного нажатия четко и без отклонений, да к тому же может управлять сразу питанием 4 устройств. Именно этого нам и надо было добиться!
А теперь кому лень было все это читать, разбираться, предлагаем посмотреть видео, в котором как раз и описано все тоже самое.

Светодиодные лампы Сколько потребляет зарядное устройство и можно ли сэкономить на нем или почему все-таки надо отключать зарядку из розетки Команды для включения и отмены опций у сотовых операторов (МТС, Билайн, Мегафон) Маркировка резисторов по цветам (номинальное сопротивление и мощность)
Электрические кабельные системы отопления (ЭКСО) отличное решение современного дома
Schneider Electric: новинки серии Odace

Если перед вами стоит задача включать и выключать устройство или несколько устройств одной кнопкой, и вы в поисках такого варианта, то вы зашли к нам явно по адресу. Здесь вашему вниманию будет предложено несколько схем реализации подобных проектов на различных микросхемах, а значит с различными принципами действия, но с одним и тем же результатом. Что же, давайте обо всем по порядку!

Управление одним устройством (включение-выключение) от одной кнопки (NE555)

Первую схему мы не особо будем «мусолить» так как схема не является нашей оригинальной идеей, кроме того эта схема итак уже разобрана везде и всюду в интернете. Мы посмотрели, что на этот счет есть даже видео. Если есть желание, то можете поискать.

По сути это схема работает на микросхеме таймере NE555. Да, микросхемка уже легендарная и сыскавшая себе славу. Здесь из этого самого таймера организовали мультивибратор. Итак, если у таймера создать обратную связь, то получается мультивибратор. А эта самая связь как раз и создается посредством нажатия на кнопку. В итоге таймер входит в режим мультивибратора и с определенной периодичность начинает выдавать на выходе импульсы то единичку, то нолик. В итоге именно этот импульс и будет управляющим для силовой и индикационной цепочки на транзисторе с реле и светодиоде.

Какие здесь могут быть минусы. Ну, главный минус, что таймер так и остается таймером, то есть его не особо интересует сколько раз вы нажали на кнопку, ему более интересно как быстро зарядиться или разрядиться конденсатор в 1 МкФ. То есть, возможно проскакивания включения выключения, не явное и неточное срабатывание. Некоторые радиолюбители называют это «дребезжанием контактов», но к этому термину это не имеет никакого отношения. Это штатная работа таймера, не более того. Итак, с этим вариантом все понятно.

Управление несколькими или одним устройством (включение-выключение) от одной кнопки (К155ИЕ7)

Теперь вариант на счетчике. Здесь принцип такой. Есть двоичный счетчик на микросхеме К155ие7, на его выходе с подачей входного сигнала меняется потенциал. Опять же это либо единичка, либо нолик. Всего четыре выхода. Первый выход на ножке 3 меняет свой потенциал при каждом 1 нажатии, второй на ножке 2 при каждом 2 и т.д. В итоге что получается? Выходит то, что одним нажатием можно управлять не только одним устройством, а сразу 4, то есть согласно количеству выходов. Здесь главное сигнал слабого тока преобразовать в сигнал высокого тока. Именно для этого на нужную нам ножку-выход достаточно «повесить» силовой модуль, собранный на оптопаре 4n25, транзисторе и реле.

Также кроме управления одним, двумя, тремя или четырьмя устройствами можно будет применить такую схему и в качестве кодового ключа, то есть кодового замка. Здесь можно поставить второй счетчик и в зависимости от высоких потенциалов на определенных ножках обеспечить питание для срабатывания управляющего запорного элемента замка. Мы не будем развивать эту тему, так как по этому поводу лучше сделать свою, тематическую статью. Можно лишь подытожить, что такая схема не намного сложнее первой при этом работает от одного нажатия четко и без отклонений, да к тому же может управлять сразу питанием 4 устройств. Именно этого нам и надо было добиться!
А теперь кому лень было все это читать, разбираться, предлагаем посмотреть видео, в котором как раз и описано все тоже самое.

Включение выключение нескольких устройств с помощью микроконтроллеров (на Ардуино)

Ну и еще одна вариация работать с целой «плеядой» различных устройств, это использование микроконтроллеров. Один из наиболее популярных и при этом понятных устройств это Адруино, на микроконтроллере Amtel 328P. Микроконтроллеры в состоянии решать поставленные задачи куда более «гибко», чем аналоговые схемы, особенно если учитывать возможность настройки и перенастройки. Поэтому один раз освоив микроконтроллеры, вы просто по наитию начнете все делать на них, так как цена на сегодняшний момент на микроконтроллеры сопоставима с аналоговыми элементами. Итак, о включении выключении нескольких устройств на микроконтроллере в статье «Ардуино управляет несколькими устройствами »

Видео о включении выключении одной кнопкой нескольких устройств (одного, двух, трех, четырех)

Будь то старые или новые гаджеты, они ломаются, и смартфоны не являются исключением. Простого падения на твердую поверхность достаточно, чтобы нанести ущерб.

Смартфоны являются хрупкими по природе. Даже если они не ломаются, они подвержены многим проблемам. Одной из таких проблем, которая очень распространена среди пользователей Android, является случай, когда кнопка питания перестает работать.

Подумайте об этом, кнопка питания — кнопка, которую мы нажимаем бесчисленное количество раз в день — перестает работать. Этого достаточно, чтобы создать хаос в нашей жизни. Когда снова и снова нажимаешь кнопку — что можно ожидать — она перестанет работать в один прекрасный день.
Это происходит не со всеми, но те, кто сталкиваются с этой проблемой знают, как она осложняет работу телефона. Вот несколько решений для этой раздражающей проблемы.

1. Автоматизация функции включения/выключения с Gravity Screen.

Gravity Screen является удивительным приложением. Использование различных датчиков телефона включает и выключает экран. Функция, такая как сенсор датчика кармана или стола, предполагает обнаружение, когда вы держите ваш телефон, а когда нет. Она учится понимать, когда вы собираетесь использовать телефон, и в соответствии с этим, включает или выключает его, честно говоря, она работает всегда, но точность может варьироваться от устройства к устройству.

Если вам не особенно интересно то, как приложение работает, и вы просто хотите, чтобы оно включало и выключало телефон, тогда вперед, скачивайте его, и оно превосходно будет работать без чрезмерного разряда батареи, если вы настроили его правильно.

2. Moto display

Приложение ограничено тем, что его могут использовать только владельцы устройств Motorola, но мы должны были добавить его в список, потому что оно просто потрясающее.
В Moto display можно видеть уведомления не включая телефон. Но его можно использовать не только для просмотра уведомлений. Просто не трогайте телефон в течение нескольких секунд, а затем возьмите его, и вы увидите как включится Moto display. В этот момент вы можете провести пальцем вниз по направлению к значку блокировки, чтобы разблокировать его. Отлично работает.


Moto dispay не блокирует телефон, это нужно делать вручную. Но так как кнопка питания не работает, мы рекомендуем установить время режима сна телефона к минимуму, то есть 15 секунд.

3. Перевести Вкл/Выкл питания на кнопку громкости

Да, вы правильно прочитали, есть приложение и для этого тоже, и самое лучшее, что оно работает, даже если телефон не рутирован. Это приложение называется Volume Unlock Power Button Fix, то есть “громкость разблокировать, клавишу питания пофиксить”. Это очень и очень длинное имя, но оно полностью определяет цель приложения.

Прежде всего, установите его на телефоне. Теперь откройте приложение и предоставьте ему права администратора. Это необходимо, в противном случае, приложение не будет работать. Откройте приложение и включите «Enable Volume Unlock» и «Screen off», используя переключатели справа. Если вы включили оба варианта, то вы сможете выключить экран на панели уведомлений и включить его с помощью кнопки громкости.
В настройках приложения, вы также можете включить такие функции, как автоматический запуск при загрузке и авто включение/отключение, которое будет работать в установленном временном интервале. Например, установив время с 06:00 до 04:00, приложение будет функционировать только в течение этого времени.
Мы использовали его в течение 2 дней, и не нашли каких-либо ненужных разрядов батареи. Это удивительное приложение.

Многие бытовые электроприборы, будь то музыкальные центры, телевизоры, различные светильники, включаются и выключаются путём нажатия одной и той же кнопки. Нажал один раз – прибор включился, нажал ещё раз – выключился. В радиолюбительской практике часто возникает необходимость реализовать этот же принцип. Такие кнопки часто используют при построении самодельных усилителей в изящных корпусах, устройство с этим принципом включения и выключения выглядит уже куда более совершенным, напоминая заводской прибор.

Схема устройства

Схема включения и выключения нагрузки одной кнопкой представлена ниже. Она проста как валенок, не содержит дефицитных компонентов и запускается сразу. Итак, схема:


Её ключевое звено – популярная микросхема таймер NE555. Именно она регистрирует нажатие клавиши и устанавливает на выходе либо логическую 1, либо 0. Кнопка S1 – любая кнопка на замыкание без фиксации, т.к. через неё практически не протекает ток, требований к кнопке нет практически никаких. Я взял первую попавшуюся, советскую 60-х годов.


Конденсатор С1 и резистор R3 подавляют дребезг контактов кнопки, С1 лучше всего применить неполярный керамический или плёночный. Светодиод LED1 индицирует о состоянии нагрузки – светодиод горит, нагрузка включена, погашен – выключена. Транзистор Т1 коммутирует обмотку реле, здесь можно применить любой маломощный транзистор структуры NPN, например, BC547, КТ3102, КТ315, BC184, 2N4123. Диод, стоящий параллельно обмотке реле, служит для подавления импульсов самоиндукции, возникающих в обмотке. Можно применять любой маломощный диод, например, КД521, 1N4148. Если нагрузка потребляет небольшой ток, можно подключать её непосредственно к схеме вместо обмотки реле. В таком случае стоит поставить транзистор помощней, например, КТ817, а диод можно исключить.

Материалы


Для сборки схемы понадобится:
  • Микросхема NE555 – 1 шт.
  • Транзистор BC547 – 1 шт.
  • Конденсатор 1 мкФ -1 шт.
  • Резистор 10 кОм – 2 шт.
  • Резистор 100 кОм – 1 шт.
  • Резистор 1 кОм – 2 шт.
  • Кнопка без фиксации – 1 шт.
  • Диод КД521 – 1 шт.
  • Светодиод на 3 в. – 1 шт.
  • Реле – 1 шт.
Кроме того, необходим паяльник, флюс, припой и умение собирать электронные схемы. Электронные компоненты стоят почти копейки и продаются в любом магазине радиодеталей.

Сборка устройства

В первую очередь, необходимо изготовить печатную плату. Она выполняется методом ЛУТ, файл к статье прилагается. Отзеркаливать перед печатью не нужно. Метод ЛУТ неоднократно описывался в интернете, научиться ему не так уж и трудно. Несколько фотографий процесса:
Скачать плату:

(cкачиваний: 958)


Если под рукой нет принтера, нарисовать печатную плату можно маркером или лаком, ведь она достаточно небольшая. После сверления отверстий плату нужно залудить, чтобы предотвратить окисление медных дорожек.
После изготовления платы можно приступать к запаиванию в неё деталей. Сначала запаиваются мелкие компоненты – резисторы, диоды. После этого конденсаторы, микросхемы и всё остальное. Провода можно как впаять напрямую в плату, так и соединить их с платой с помощью клеммников. Контакты питания и контакты OUT для подключения реле я вывел через клеммники, а кнопку впаял непосредственно в плату на паре проводков.


Таким образом, эту плату можно встроить в какой-нибудь прибор, будь то усилитель, самодельный светильник, или что-либо иное, требующего включения и выключения одной кнопкой без фиксации. В сети есть множество других подобных схем, построенных на советских микросхемах, транзисторах, однако именно эта схема с использованием микросхемы NE555 зарекомендовала себя как самая простая и одновременно с этим надёжная.

Принцип работы наглядно показан на видео.

САМАЯ ПРОСТАЯ СХЕМА Включения / Выключения одной Нефиксируемой кнопкой любой нагрузки | Дмитрий Компанец

Электронная схема импульсного реле с одной кнопкой

Электронная схема импульсного реле с одной кнопкой

Это просто парадокс и загадка, почему самые простые и надежные схемы замалчиваются и скрываются, а сложные и ненадежные решения массово внедряются в головы зрителей и читателей.

Выключатор на одной не фиксируемой кнопке можно создавать долго и нудно, можно простенько на релюшечке, а можно и еще проще всего на одной даталюхе с тремя ногами.

НАЧНЕМ ПО ПОРЯДКУ

Просто и надежно без были и дребезга можно включать и выключать нагрузку с помощью всего одной не фиксируемой кнопки по разному…
Если простые и «тупые» однокнопочные схемы вам порядком поднадоели, предложу «простецкое решение» с использованием микроконтроллеров и программ

Однокнопочное решение с ЧИПАМИ и Прошивками

Однокнопочное решение с ЧИПАМИ и Прошивками

Автор данного решения не особо позаботился о токах питания транзистора управляющего реле, но не забыл воткнуть диод параллельно обмотке «для защиты от индукции!». Вот только защита хреновая получится без резистора гасящего импульс тока (классика учебников схемотехники).

Ну так ладно оставим процессоры и контроллеры в покое и побалуемся чипами типа NE555 с транзисторами…

Однокнопочное решение на микросхеме 555

Однокнопочное решение на микросхеме 555

Тута конечно все просто — Мощный полевик под управлением таймера 555 в каскодной цепи с Мощным биполярным транзистором.
Забавно — нафига ставить два транзистора там где одному мало места ?
В добавок эта схема перестает быть универсальной и работает только в небольшом диапазоне постоянных напряжений.

ДОЛОЙ МИКРОСХЕМЫ ! ВСЁ ДОЛЖНО БЫТЬ ПРОЩЕ !

Давайте взглянем «в глаза» схемам однотипным и часто перерисовываемым из листочка описания всего одного чипа (двойной полевик) используемого в схемотехнике

Однокнопочное решение на паре инвертирующих триодов

Однокнопочное решение на паре инвертирующих триодов

Если вас смущают такие триоды с инверсией — покажу проще

Однокнопочное решение на паре полевых транзисторов

Однокнопочное решение на паре полевых транзисторов

Именно эту схему вы чаще всего встретите в «листочке ****» — листе описания полупроводникового прибора IRF7319

Сравните с перерисовкой

Однокнопочное решение на паре полевых транзисторов

Однокнопочное решение на паре полевых транзисторов

УЧТИТЕ! Эта схема не годится ни для емкостных ни для индуктивных нагрузок ! Автор срисования просто не учел, что силовой полевик в этой схеме просто не станет включаться и выключаться без активной нагрузки (хотя бы резистор на выходе).

Катим дальше! Что есть у нас в запасе простецкого …

Чего то сложновато …..

Чего то сложновато …..

А може по проще можно ? К примеру вот на тиристоре ….

А что? Хорошая такая схема…. правда не очень стабильная (как мне показалось) её можно вот такой заменить

Однокнопочное решение на тиристоре и реле

Однокнопочное решение на тиристоре и реле

Но и тут лишние детали ! Вот тиристор к примеру, Зачем он тут, если все можно сделать проще

Однокнопочное решение на реле РПС32А

Однокнопочное решение на реле РПС32А

Одна релюшка и две деталюшка — вот и схема реальная и почти универсальная . Правда реле эти старинные военные все реже встречаются и не покупаются, хотя до сих пор в боевых вертолетах используются.

А НЕУЖЕЛИ ДО СИХ ПОР НЕ СДЕЛАЛИ ВСЁ ЭТО В ОДНОЙ ДЕТАЛИ?

К примеру вот в такой — ХХ*ХХХ*12*Х

Ведь все так просто и банально — Симистор с микрочипом внутри и ничего лишнего.
Чтобы сделать управление одной только кнопкой — Бери одну деталь, ставь и наслаждайся результатом. Быстро просто надежно.

Ну никто ведь в наше время не собирает схему стабилизатора из дискретных элементов, а использует КРЕНки или ЛМки в одной детали.

Кажется мне, что искусство схемотехники как раз и состоит в том, чтобы использовать достижения заводских разработок, а не выдумывать диоды из чумазого паяльника , пытаясь их приспособить в дело. Да , это увлекательно, но не имеет отношения к делу, точнее к настоящим практичным самоделкам.

Как переключить схему защелки с включения / выключения нажатия на схему включения / выключения и как сделать ее автоматическим отключением при первом подключении питания?

Поведенческий обзор

Хотя SOT-23-6 MCU является очевидным подходом, если вы хотите избежать связки инструментов и работы по кодированию, связанной с его использованием, тогда следующая временная диаграмма иллюстрирует один подход:

  • pwr — это триггер включения питания, который синхронизируется clk .Он сбрасывается при включении питания.

  • long — это однократный снимок с длительным периодом времени, который представляет ваш период длительного нажатия. Он всегда срабатывает по нарастающему фронту вашей кнопки. Предполагается, что его время намного больше, чем время устранения дребезга, необходимое для нажатия кнопки.

  • clk является однократным с периодом времени, достаточным для формирования хорошего синхронизирующего импульса для pwr FF, а также достаточно продолжительным, чтобы покрыть период устранения дребезга, необходимый при отпускании кнопки.Он запускается задним краем вашей кнопки, когда \ $ \ overline {\ textbf {long}} \: + \: \ overline {\ textbf {pwr} \ vphantom {\ textbf {long}}} \ $.

  • ПБ кнопочный.

Питание включается при отпускании первоначального нажатия кнопки включения питания (любое короткое нажатие будет работать) и будет продолжаться очень скоро после отпускания длительного нажатия кнопки. Если нажатие кнопки слишком короткое, чтобы выключить питание, то спад PB произойдет до того, как long перейдет в низкий уровень, и, поскольку оба long и pwr все еще остаются высокими, clk не будет срабатывает, и pwr останется активным.

Опять же, если набор инструментов и усилия по кодированию вам подходят, то MCU SOT-23-6 будет лучшим выбором. Маленький, дешевый, программируемый под ваши конкретные нужды и т. Д. Но если это проблема, то я думаю, вы просите что-то вроде вышеперечисленного.

555 Дизайн

Для реализации вышеизложенного с 555 устройствами потребуется что-то вроде этого:

смоделировать эту схему — Схема создана с помощью CircuitLab

Сигнал сброса при включении генерируется RC и инвертором Шмитта CD40106B.Это будет использоваться для генерации чистого сброса схемы.

(В корпусе CD40106B шесть инверторов Шмитта, и в этой схеме используются три из них. Таким образом, корпус будет использоваться наполовину.)

Кнопка — это просто подтягивающий резистор и переключатель на массу.

Из микросхемы 555 IC сделано два моноблока.

Первый (внизу, вверху) обеспечивает длительный импульс синхронизации, который запускается нарастающим фронтом входа PB . Вы можете отрегулировать номиналы резистора или конденсатора, которые прикреплены к выводам разряда и порогового значения , чтобы настроить длительный период времени по своему вкусу.Я установил здесь примерно \ $ 3 \: \ text {s} \ $.

Второй (вверху, вверху) обеспечивает короткий синхронизирующий импульс для мощности FF, который запускается задним фронтом входа PB . Однако в этом случае бывают моменты, когда мы не хотим допускать короткого тактирующего импульса. Таким образом, здесь добавлены BJT-транзисторы вместе с четырьмя резисторами, чтобы сформировать схему, предназначенную для подавления генерации тактовых импульсов, когда оба LONG и PWR имеют высокий уровень. В противном случае это разрешено.

Наконец, есть часть FF состояния включения. Вы можете использовать его выход, например, для управления схемой BJT, которая активирует ваше реле. Или для других целей. Он активен-ВЫСОКИЙ. Здесь используется микросхема CD4013B, которая содержит два устройства FF. (Используется только один.)

Вот иллюстративный результат прогона схемы на LTspice:

Вверху вы можете видеть события нажатия кнопок на нижней зеленой кривой. (Мне пришлось сложить три отдельных переключателя в LTspice, чтобы эмулировать это.Следующий красный цвет — это выход PWR . Вы можете видеть, что он отключается, когда кнопка удерживается для \ $ 3 \: \ text {s} \ $, но это , а не , когда кнопка удерживается для \ $ 2 \: \ text {s} \ $ во второй попытке (правая половина). Над ним, голубым цветом, вы можете увидеть выход таймера LONG . Он реагирует на нарастающий фронт кнопки и используется для измерения продолжительности нажатия кнопки. И, наконец, вверху, фиолетовым цветом, изображен CLK , который управляет PWR FF , если задний фронт переключателя может пройти через него.

Теперь вы можете понять, почему никто не делал этого, пока не стали доступны микроконтроллеры. С участием MCU, это всего лишь дешевый, крошечный кнопочный переключатель, и пользователь, который теперь вынужден узнайте, что удерживание переключателя в течение некоторого времени выключает все.

(есть еще одно применение: MCU не выключается принудительно. когда он этого не ожидает. Разрешено « делать что-то » перед поворотом выключить или перейти в спящий режим. Ничего из этого не применимо в вашем случае.)

Может возникнуть вопрос, «Зачем вам все эти проблемы только для того, чтобы подражать MCU, а не просто использовать ползунок или тумблер? »Это просто.’Вкл выкл’. И многое другое доступно по всему миру.

Ditch The Switch: сводка по цепи с мягкой фиксацией

Для некоторых из нас есть несколько звуков, более удовлетворительных, чем глубокий резонирующий «стук», когда качественный тумблер сжимается в нужном положении. При работе с электроникой не бывает избытка интуитивных переживаний, поэтому мы любим наслаждаться ими, когда у нас есть такая возможность. Но, конечно, о вкусах не спорят, и мы, , полагаем, что существуют даже ситуации, когда тяжелый физический выключатель может быть не лучшим решением.Ну так что ты делаешь?

Включите цепь питания с фиксацией, часто называемую «программным» переключателем. [Крис Чимиенти] недавно собрал захватывающее видео, в котором зритель проходит через пять различных схем, которые можно использовать для добавления одного из этих так называемых переключателей мягкой мощности в ваш проект. Каждая схема поясняется, схематически, снабжается аннотациями и, в конечном итоге, даже демонстрируется на физическом макете. Единственное, что вам нужно сделать, это выбрать тот, который вам больше всего нравится.

На самом деле существует ряд очень веских причин отказаться от классического тумблера для одной из этих схем.Но самая большая проблема, как это ни парадоксально, — это стоимость. Даже «дешевые» тумблеры, вероятно, будут одним из самых дорогих компонентов в вашей ведомости материалов, особенно при малых объемах. Для сравнения: пара транзисторов и несколько пассивных компонентов, которые потребуются для создания одной из этих схем фиксации, обойдутся вам всего в пару центов.

Даже если вы не ищете новый способ выключить свои проекты, этот обзор схем является фантастическим напоминанием о том, насколько мощными могут быть дискретные компоненты.В эпоху, когда кажется, что большинство проектов собрано из готовых модулей, иногда бывает приятно вернуться к основам.

Схема однокнопочного реле ВКЛ / ВЫКЛ с защелкой

Одинарная кнопка Блокирующий выключатель реле ВКЛ ВЫКЛ

одно кнопочное реле пуска и остановки

Это схема переключателя ВКЛ / ВЫКЛ при использовании однокнопочного переключателя . В этой схеме использовано 2 реле.Выполните подключение, как показано на схеме. Когда вы подаете питание на соединение, выходная нагрузка выключена. После нажатия переключателя на 1 секунду нагрузка включается, но снова нажмите тот же кнопочный переключатель на 1 секунду, после чего нагрузка выключится.

Нажать выключатель — ВКЛ.

Снова нажмите выключатель — ВЫКЛ

Рабочий

Во-первых, когда переключатель не нажат и питание в этой цепи включено, ток протекает через общий вывод реле 1-го RL1, и ток идет через него на катушку 2-го реле, в этом случае 2-е реле RL2 только активирован, а RL не активирован.

Когда после нажатия переключателя на секунду положительный источник питания проходит через общий контакт, а контакт NO RL2 — RL1 пересекает D1, RL1 теперь активируется, а RL2 деактивирован, потому что ток RL отключен. Таким образом, ток также поступает на нагрузку, а затем нагрузка включается.

Теперь RL2 становится ВЫКЛЮЧЕННЫМ, поэтому контакты COM и NO RL2 подключены. При повторном нажатии кнопки происходит короткое замыкание через эти контакты, и из-за внезапного короткого замыкания напряжение на катушке RL1 равно 0, и RL1 отключается.Nd снова после деактивации RL1 к нему подключаются контакты COM и NC, и ток идет на катушку RL2, и активируется gin RL2. В этой ситуации снова выходная нагрузка ВЫКЛЮЧЕНА.

Если вы хотите использовать его для нагрузки переменного тока, подключите еще одно реле в месте выходной нагрузки, а затем подключите нагрузку переменного тока с этим третьим реле.

2 диода 1N4007

Если вы хотите использовать его для нагрузки переменного тока, подключите еще одно реле в месте выходной нагрузки, а затем подключите нагрузку переменного тока с этим третьим реле.

электрическая схема

Недостаток этой схемы — При нажатии кнопки происходит короткое замыкание на мгновение (примерно полсекунды) между контактом RL2 NC и контактом COM. Это короткое замыкание вредно для входного источника питания и сократит срок службы батареи.

Видео моделирования

Также прочтите

Выключатель питания с фиксацией использует кнопку мгновенного действия

Слаботочные кнопочные переключатели мгновенного действия, такие как «тактильные» типы для монтажа на печатной плате, дешевы и доступны в большом количестве различных стилей.С другой стороны, типы защелок часто больше, дороже и доступны только в относительно ограниченном диапазоне стилей. Это может быть проблемой, если вам нужен небольшой недорогой переключатель для фиксации питания нагрузки. Решение состоит в том, чтобы преобразовать мгновенное действие кнопки в функцию фиксации.

Предыдущие идеи проектирования предлагали решения, основанные на дискретных компонентах (ссылка 1) и схемах на основе ИС (ссылки 2 и 3). Однако для схемы, описанной ниже, требуется всего два транзистора и несколько пассивных компонентов для достижения того же результата.

Схема на рис. 1 (a) сконфигурирована для фиксации питания на стороне низкого напряжения (отнесенной к земле). Работает в режиме «тумблер»; то есть первое замыкание переключателя подает питание на нагрузку, второе отключает питание и так далее.

Рисунок 1 Схема преобразует нажимной переключатель мгновенного действия в переключатель питания с фиксацией.

Чтобы понять, как работает схема, предположим, что источник питания постоянного тока, + V S , только что был подан, конденсатор C1 изначально не заряжен, а Q1 выключен.P-канальный MOSFET, Q2, удерживается в выключенном состоянии с помощью R1 и R3, которые работают последовательно, чтобы подтянуть затвор до + V S , так что V GS равен нулю. Теперь схема находится в «разблокированном» состоянии, когда напряжение нагрузки V L на выводе OUT (+) равно нулю.

Если нормально разомкнутый нажимной переключатель на мгновение замыкается, то C1 — будучи незаряженным — переводит затвор Q2 на 0 В, тем самым включая полевой МОП-транзистор. Напряжение нагрузки на OUT (+) теперь немедленно возрастает до + V S , и Q1 принимает базовое смещение через R4 и включается.В этих условиях Q1 насыщается и подтягивает затвор Q2 к низкому уровню через R3, таким образом удерживая полевой МОП-транзистор включенным при размыкании переключателя. Теперь схема находится в «зафиксированном» состоянии, когда оба транзистора включены, нагрузка находится под напряжением, а C1 заряжается до + V S через R2.

Когда переключатель на мгновение замыкается во второй раз, напряжение на C1 (к настоящему времени примерно равное + V S ) передается на затвор Q2. Поскольку напряжение затвор-исток Q2 теперь примерно равно нулю, полевой МОП-транзистор выключается, и напряжение нагрузки падает до нуля.Напряжение база-эмиттер Q1 также падает до нуля, и транзистор выключается. Следовательно, когда переключатель отпущен, нет ничего, что могло бы удерживать Q2 включенным, и схема возвращается в свое «разблокированное» состояние, когда оба транзистора выключены, нагрузка обесточена, а C1 разряжается через R2.

Резистор R5 на выходных клеммах — это дополнительный компонент, который действует как понижающий. Когда переключатель отпускается, C1 разряжается через R2 в нагрузку. Если импеданс нагрузки очень высок (т. Е. Близок по величине к R2) или если он содержит активные устройства, такие как светодиоды, напряжение нагрузки в момент выключения Q2 может быть достаточно большим, чтобы смещать Q1 через R4, тем самым предотвращая цепь от правильного выключения.Присутствие R5 опускает клемму OUT (+) до 0 В, когда Q2 выключается, обеспечивая тем самым быстрое отключение Q1 и позволяя схеме вернуться в свое разблокированное состояние надлежащим образом.

Если транзисторы правильно рассчитаны, схема будет работать в широком диапазоне напряжений и хорошо подходит для управления нагрузками, такими как реле, соленоиды, светодиоды и т. Д. Однако имейте в виду, что некоторые вентиляторы и двигатели постоянного тока продолжают вращаться при отключении питания их привода. Это вращение может генерировать ЭДС, достаточно большую для смещения Q1, тем самым предотвращая отключение схемы.Вы можете устранить эту проблему, вставив блокирующий диод последовательно с выходом, как показано на Рисунок 1 (b) . Вы также должны включить R5, чтобы гарантировать правильное выключение Q1.

Дополнительная схема, показанная на рис. 2 предназначена для нагрузок со стороны высокого напряжения, подключенных к положительной шине питания, таких как реле, показанное в этом примере.

Рисунок 2 Дополнительная цепь, предназначенная для нагрузок на стороне высокого напряжения.

Обратите внимание, что Q1 был заменен транзистором PNP, а Q2 теперь является N-канальным MOSFET.Схема работает аналогично описанной выше. Здесь R5 действует как подтягивающий резистор, который подтягивает вывод OUT (-) до + VS, когда Q2 выключается, тем самым обеспечивая быстрое выключение Q1. Как и в предыдущей схеме, R5 не является обязательным и необходим только для типов нагрузки, упомянутых ранее.

Обратите внимание, что в обеих схемах постоянная времени, создаваемая C1-R2, обеспечивает дребезг контактов нажимного переключателя. Обычно значение от 0,25 до 0,5 с должно быть адекватным. Меньшие постоянные времени могут привести к нестабильному поведению, тогда как большая постоянная времени увеличивает время ожидания между замыканиями переключателя, необходимое для обеспечения правильной зарядки и разрядки C1.При C1 = 330 нФ и R2 = 1 МОм, как показано, постоянная времени номинально составляет 0,33 с. Обычно этого достаточно, чтобы разъединить контакты и позволить переключить мощность нагрузки через пару секунд или около того.

Обе цепи предназначены для фиксации и разблокировки в ответ на кратковременное замыкание переключателя. Тем не менее, каждый из них был разработан для обеспечения правильной работы, даже если нажимной переключатель удерживается в замкнутом состоянии в течение любого периода времени. Рассмотрим схему , рис. 2, , когда включен Q2.Когда переключатель нажимается, чтобы разблокировать схему, затвор опускается до 0 В (поскольку C1 не заряжен), и MOSFET выключается, позволяя переходу R1-R2 повышаться до + V S через R5 и сопротивление нагрузки. . В то же время Q1 также отключается, так что затвор Q2 подтягивается к 0 В через последовательную комбинацию R3 и R4. Если переключатель отпустить немедленно, C1 просто зарядится до + V S через R2. Однако, если переключатель остается замкнутым, напряжение затвора Q2 будет определяться делителем потенциала, образованным в основном R2 и R3 + R4.Если мы предположим, что клемма OUT (-) примерно равна + V S , когда цепь не зафиксирована, напряжение затвор-исток Q2 определяется следующим образом: V GS = (+ V S ) × (R3 + R4) / (R2 + R3 + R4) = 0,02 (+ V S ). Даже если + V S достигает 30 В, результирующее напряжение затвор-исток около 0,6 В будет слишком низким для повторного включения полевого МОП-транзистора. Следовательно, оба транзистора остаются выключенными до размыкания контактов переключателя.

Схема в Рис. 2 фиксируется путем кратковременного замыкания нажимного переключателя, когда C1 заряжается до + V. S , что приводит к падению OUT (-) до 0 В, когда сразу включается Q2, за которым быстро следует Q1.Мгновенное замыкание переключателя позволит C1 разряжаться до нуля через R2 после размыкания контактов. Однако, если переключатель удерживается замкнутым, напряжение затвора Q2 будет определяться делителем потенциала, образованным R2 и R3. Поскольку Q1 насыщен, соединение R3-R4 на коллекторе Q1 будет подтянуто до + V S , а соединение R1-R2 будет понижено до 0 В через Q2. Следовательно, когда переключатель удерживается замкнутым, напряжение затвор-исток Q2 определяется выражением: V GS = (+ V S ) × R2 / (R2 + R3) = 0.99 (+ V S ). Следовательно, при условии, что напряжение питания по крайней мере равно пороговому напряжению затвор-исток Q2, как Q2, так и Q1 будут оставаться включенными до тех пор, пока контакты переключателя не разомкнутся.

Обе схемы обеспечивают недорогой способ получения функции фиксации от переключателя мгновенного действия, и, как и в случае переключателя с механической фиксацией, рассеиваемая мощность в состоянии покоя (без фиксации) равна нулю.

Прочтите следующую дизайнерскую идею из этой серии : новый улучшенный выключатель питания с фиксацией

Список литературы

  1. Смит, Энтони Х., «Блокирующий выключатель питания использует кнопку мгновенного действия», EDN , 28 октября 2004 г.
  2. Шелле, Дональд, «Электронная схема заменяет механический двухпозиционный переключатель», EDN , 28 сентября 2006 г.
  3. Бхандаркар, Сантош, «Электронная схема на основе одной ИС заменяет механический переключатель», EDN , 15 марта 2007 г.

Статьи по теме :

Схема фиксирующего реле

Что такое реле с фиксацией?

Блокировочное реле — это двухпозиционный переключатель с электрическим приводом.Он управляется двумя переключателями или датчиками мгновенного действия, один из которых «устанавливает» реле, а другой «сбрасывает» реле. Блокировочное реле сохраняет свое положение после отпускания исполнительного переключателя, поэтому оно выполняет базовую функцию памяти.

Реле с фиксацией похоже на двухпозиционный («двойной ход») тумблер. Ручка тумблера физически переводится в одно положение и остается в этом положении до тех пор, пока не будет переведена в противоположное положение. Блокирующее реле электрически «установлено» в одно положение, и оно остается «заблокированным» в этом положении до тех пор, пока оно не будет электрически «сброшено» в противоположное положение.

Есть два типа реле блокировки:
Реле с электрической фиксацией — это стандартное реле с одним из собственных контактов, подключенных к цепи катушки. Внешний переключатель сначала включает реле, а затем удерживает его включенным собственным контактом. Внешний переключатель сброса прерывает подачу питания на реле, которое выключает его. Бистабильное реле или реле с механической защелкой обычно имеет две внутренние катушки и внутренний механизм защелки.При подаче питания на одну катушку контакты «устанавливаются» в одно положение, и контакты остаются в этом положении до тех пор, пока не будет подано напряжение на катушку «сброса».
Отличия:
Реле с электрической фиксацией —
• Использует стандартное реле с одной катушкой,
• Всегда сбрасывается при отключении питания,
• Один контакт предназначен для управления фиксацией,
• Переключатель «Set» — нормально разомкнутый контакт,
• Переключатель «Сброс» — это нормально замкнутый контакт.
Реле с механической фиксацией —
• Использует механизм с двумя катушками или поляризованными одиночными катушками,
• Сохраняет свое положение при отключении питания, поэтому схема будет в том же состоянии при повторном включении питания,
• Все контакты доступны для других функций цепи,
• Переключатели «Set» и «Reset» являются нормально разомкнутыми контактами.

На двух схемах подключения ниже показано, как подключать электрическую защелкивающуюся цепь реле. Это создает базовую функцию памяти … реле «запоминает», какой переключатель был нажат последним.

Для реле с механической фиксацией, нажмите здесь .

В этих схемах переключатель «Set» — это любой нормально разомкнутый переключатель или релейный контакт, например, детектор поезда MRD1.Переключатель «Сброс» — это любой нормально замкнутый переключатель или релейный контакт. При нажатии переключателя «Set» реле включается. Реле остается включенным даже после того, как переключатель «Set» был отпущен, потому что катушка реле (контакты K1 и K2) теперь получает питание через свой собственный контакт (контакты 2C и 2NO).

При нажатии переключателя «Сброс» питание катушки реле прерывается, в результате чего реле выключается. Это разрывает соединение через контакт 2C-2NO, поэтому реле остается выключенным.

Этот тип схемы памяти называется «энергозависимой» памятью, потому что при выключении источника питания реле возвращается в выключенное состояние. При повторном включении источника питания реле будет оставаться в выключенном состоянии до тех пор, пока не будет нажат переключатель «Set».

Используемое здесь реле — это любое стандартное реле с двумя или более наборами контактов или «полюсов» (DPDT, 3PDT, 4PDT и т. Д.), Такое как реле вспомогательного питания MRAPR. Реле MRAPR включает диоды на катушке для защиты контактов переключателя от «обратного» напряжения, и его можно использовать как в цепях переменного, так и постоянного тока.

См. Примечание о номинальных характеристиках контактов переключателя.

Эта первая схема представляет собой схему, в которой переключатель «Set» имеет приоритет. Это означает, что если одновременно нажать кнопки «Set» и «Reset», реле включится.

На следующей схеме показана схема, в которой переключатель «Сброс» имеет приоритет. Если одновременно нажать переключатели «Set» и «Reset», реле выключится.



Для реле с механической фиксацией, нажмите здесь .

© Copyright 2009-2020 ООО «Азатракс», Лонгмонт, Колорадо

Объяснение простых схем таймера задержки

В этом посте мы обсудим создание простых таймеров задержки с использованием очень обычных компонентов, таких как транзисторы, конденсаторы и диоды.Все эти схемы будут производить задержку включения или задержку выключения с интервалами времени на выходе на заранее определенный период, от нескольких секунд до многих минут. Все конструкции полностью регулируются.

Важность таймеров задержки

Во многих приложениях электронных схем задержка в несколько секунд или минут становится решающим требованием для обеспечения правильной работы схемы. Без указанной задержки схема может выйти из строя или даже быть повреждена.

Давайте подробно разберем различные конфигурации.


Вы также можете прочитать о таймерах задержки на основе IC 555. Рекомендуется для вас!


Использование одиночного транзистора и кнопки

Первая принципиальная схема показывает, как транзисторы и несколько других пассивных компонентов могут быть подключены для получения заданных выходов времени задержки.

Транзистор снабжен обычным базовым резистором для функций ограничения тока.

Светодиод, который используется здесь только для индикации, ведет себя как нагрузка коллектора схемы.

Конденсатор, который является важной частью схемы, занимает определенное положение в схеме, мы можем видеть, что он размещен на другом конце базового резистора, а не непосредственно на базе транзистора.

Кнопка используется для включения цепи.

При кратковременном нажатии кнопки положительное напряжение от линии питания поступает на базовый резистор и включает транзистор, а затем светодиод.

Однако в ходе вышеуказанного действия конденсатор также полностью заряжается.

При отпускании кнопки, хотя питание базы отключается, транзистор продолжает работать с помощью накопленной энергии в конденсаторе, который теперь начинает разряжать накопленный заряд через транзистор.

Светодиод также остается включенным, пока конденсатор полностью не разрядится.

Те значение конденсатора определяет время задержки или время, в течение которого транзистор остается в проводящем режиме.

Наряду с конденсатором, номинал базового резистора также играет важную роль в определении времени, в течение которого транзистор остается включенным после отпускания кнопки.

Однако схема, использующая только один транзистор, сможет создавать задержки, которые могут составлять всего несколько секунд.

При добавлении еще одного транзисторного каскада (следующий рисунок) указанный выше диапазон времени задержки может быть значительно увеличен.

Добавление еще одного транзисторного каскада увеличивает чувствительность схемы, что позволяет использовать более высокие значения резистора синхронизации, тем самым увеличивая диапазон временной задержки схемы.

Дизайн печатной платы

Видео демонстрация

Использование симистора:

На следующем изображении показано, как указанная выше схема таймера задержки может быть интегрирована с симистором и использоваться для переключения нагрузки сети переменного тока

Вышеупомянутое можно дополнительно модифицировать с помощью автономного силового бестрансформаторного источника питания, как показано ниже:

Без кнопки

Если вышеуказанная конструкция предназначена для использования без кнопки, то же самое может быть реализовано, как показано на следующей схеме:

Вышеупомянутый эффект задержки выключения без нажатия кнопки может быть дополнительно улучшен путем использования двух транзисторов NPN и использования конденсатора между базой / землей левого NPN

Следующая схема показывает, как соответствующая кнопка может стать неактивной, как только она будет нажата, и пока таймер задержки находится в активированном состоянии.

В это время любое дальнейшее нажатие кнопки не влияет на таймер, пока выход активен или пока таймер не завершит свою задержку.

Задержка от внешнего триггера

Проблема, заданная г-ном Гленом (одним из преданных читателей этого блога):

У меня есть ситуация, когда у меня импульс 12 В, который длится около 4 секунд (от поворотного переключателя, вращается медленным двигателем), но мне нужно всего лишь полсекунды (чтобы вызвать механический звонок / перезвон).

Есть ли способ взять длинный импульс в цепь и послать намного более короткий импульс?

Решение вышеуказанной проблемы представлено на следующей схеме:

Двухшаговый последовательный таймер

Вышеупомянутая схема может быть изменена для создания двухступенчатого последовательного генератора задержки. Эта схема была запрошена одним из заядлых читателей этого блога, г-ном Марко.

Простая цепь аварийной сигнализации отключения с задержкой показана на следующей диаграмме.

Схема запрошена Dmats.

Следующая схема была запрошена Fastshack3

Таймер задержки с реле

«Я ищу схему, которая будет управлять выходным реле. Это будет сделано на 12 В, а последовательность будет инициирована ручным переключателем.

Мне понадобится регулируемая задержка времени (возможно, отображаемое время) после отпускания переключателя, тогда выход будет включаться в течение настраиваемого времени (также возможно отображается) перед выключением.

Последовательность не будет перезапущена, пока не будет нажата кнопка и снова выпустили.

Время после отпускания кнопки составляет от 250 миллисекунд до 5 секунд. Время «включения» выхода для включения реле составляет от 500 миллисекунд до 30 секунд. Дайте мне знать, если вы можете что-нибудь поделать. Спасибо! »

До сих пор мы научились делать простые таймеры задержки выключения. Теперь давайте посмотрим, как мы можем построить простую схему таймера задержки включения, которая позволяет подключенной нагрузке на выходе включаться с некоторой заранее заданной задержкой после выключения питания. ВКЛ.

Объясненная схема может использоваться для всех приложений, которые требуют начальной задержки включения для подключенной нагрузки после включения сетевого питания.

Рабочие характеристики схемы таймера задержки включения

Показанная диаграмма довольно проста, но очень впечатляюще предоставляет необходимые действия, кроме того, период задержки является переменным, что делает установку чрезвычайно полезной для предлагаемых приложений.

Функционирование можно понять по следующим пунктам:

Предполагая, что нагрузка, требующая задержки включения, подключена к контактам реле, при включении питания 12 В постоянного тока проходит через R2, но не может достичь базы T1, потому что изначально C2 действует как короткое замыкание на землю.

Таким образом, напряжение проходит через R2, падает до соответствующих пределов и начинает заряжать C2.

Как только C2 заряжается до уровня, который развивает потенциал от 0,3 до 0,6 В (+ стабилитрон) на базе T1, T1 мгновенно включается, переключая T2, а затем реле … наконец, нагрузка получает тоже включен.

Вышеупомянутый процесс вызывает необходимую задержку для включения нагрузки.

Период задержки может быть установлен соответствующим выбором значений R2 и C2.

R1 гарантирует, что C2 быстро разряжается через него, так что схема достигает положения ожидания как можно скорее.

D3 блокирует заряд от достижения базы T1.

Список запчастей

R1 = 1o0K (резистор для разряда C2, когда цепь выключена))
R2 = 330K (синхронизирующий резистор)
R3 = 10K
R4 = 10K
D1 = стабилитрон 3 В (опционально, может быть заменен на провод)
D2 = 1N4007
D3 = 1N4148
T1 = BC547
T2 = BC557
C2 = 33 мкФ / 25 В (синхронизирующий конденсатор)
Реле = SPDT, 12 В / 400 Ом

PCB Design
4 Примечание по применению

узнайте, как приведенная выше схема таймера задержки включения становится применимой для решения следующей проблемы, представленной одним из ярых последователей этого блога, г-ном.Нишант.

Проблема цепи:

Здравствуйте, сэр,

У меня есть автоматический стабилизатор напряжения на 1 кВА. У него есть один дефект: при включении очень высокое напряжение выдается в течение примерно 1,5 с (поэтому CFL и лампочка часто перегорают) после что напряжение становится нормальным.

Я открыл стабилизатор, он состоит из автотрансформатора, 4 реле 24 В, каждое реле подключено к отдельной цепи (каждое из

10K предустановок, BC547, стабилитрон, BDX53BFP npn, пара транзисторов Дарлингтона IC, конденсатор 220 мкФ / 63 В. , Конденсатор 100uF / 40V, 4 диода и несколько резисторов).

Эти схемы питаются от понижающего трансформатора, и выходной сигнал этих схем берется через соответствующий конденсатор 100 мкФ / 40 В и подается на соответствующее реле. Что делать для решения проблемы. Пожалуйста, помогите мне. Нарисованная вручную принципиальная схема прилагается .

Решение проблемы цепи

Проблема в приведенной выше схеме может быть вызвана двумя причинами: одно из реле на мгновение включается, соединяя неправильные контакты с выходом, или одно из ответственных реле стабилизируется с правильным напряжением. через некоторое время после включения питания.

Поскольку имеется более одного реле, выявление неисправности и ее устранение может быть немного утомительным … Схема таймера задержки включения, описанная в вышеупомянутой статье, может быть действительно очень эффективной для обсуждаемой цели.

Подключения довольно простые.

Используя 7812 IC, таймер задержки может питаться от существующего источника питания 24 В стабилизатора.
Затем замыкающие контакты реле задержки могут быть подключены последовательно с проводкой выходного разъема стабилизатора.

Вышеупомянутая проводка мгновенно решила бы проблемы, так как теперь выход будет переключаться через некоторое время во время включения питания, давая достаточно времени для внутренних реле, чтобы установить правильные напряжения на их выходных контактах.

Отзыв от г-на Билла

Привет, Свагатам,

Я наткнулся на вашу страницу, проводя исследование в Интернете, чтобы сделать мою задержку более последовательной. Сначала немного справочной информации.

Я занимаюсь драг-рейсингом и запускаю машину при первом взгляде на 3-ю янтарную лампочку, когда рождественская елка спускается.

Я использую переключатель трансмиссии, который нажат, чтобы заблокировать автоматическую коробку передач одновременно вперед и назад.

Это позволяет увеличить обороты двигателя для увеличения мощности для запуска. Когда кнопка отпущена, трансмиссия выключается с заднего хода и движется вперед на высоких оборотах.

Это похоже на вырывание сцепления на автомобиле с механической коробкой передач, в любом случае моя машина реагирует на это быстро, и в результате появляется красный свет, выезжающий на ранний срок, и вы проигрываете гонку.

Ускорение вашей реакции на запуск — это все, и это игра на сотни тысяч с большими мальчиками, поэтому я поставил переключатель транс-тормоза на реле и наложил комбо на 1100 мкФ на реле, чтобы задержать его запуск.

Из-за автомобильной электроники я не верю, что есть точное напряжение, заряжающее эту крышку каждый раз, когда я активирую эту схему, и точность является ключевым моментом, поэтому я купил стабилизатор мощности на Ebay, который потребляет 8-15 вольт и дает постоянный 12вольт на выходе.

Это перевернуло мой сезон, но я считаю, что эту схему можно было бы сделать более точной и более легким способом варьировать время задержки, чем заменять комбо.

Также я должен установить диод перед реле, а не сейчас, потому что все, что есть, это выключатель — куда пойдет ток? Я ни в коем случае не инженер-электрик, но у меня есть некоторые знания по устранению неисправностей в аудио высокого класса в течение многих лет.

Хотел бы узнать ваши мысли — спасибо

Билл Кореки

Анализ и решение схемы

Привет, Билл,

Я приложил схему регулируемой цепи задержки, пожалуйста, проверьте ее. Вы можете использовать его для указанной цели.

Предустановка 100K может использоваться и настраиваться для получения точных коротких периодов задержки в соответствии с вашими требованиями.

Тем не менее, обратите внимание, что для правильной работы реле на 12 В напряжение питания должно быть минимум 11 В, если это не выполняется, цепь может работать неправильно.

С уважением.

Простой таймер задержки от 5 до 20 минут

В следующем разделе обсуждается простая схема таймера задержки от 5 до 20 минут для конкретного промышленного применения.

Идею предложил мистер Джонатан.

Технические требования

Пытаясь найти решение моей проблемы в Google, я наткнулся на вашу публикацию выше.

Я пытаюсь понять, как построить лучший контроллер Sous Vide.Основная проблема заключается в том, что моя водяная баня имеет очень высокий гистерезис, и при нагреве от более низких температур будет выходить примерно на 7 градусов выше температуры, при которой прекращается питание.

Он также очень хорошо изолирован, с зазором между внутренним и внешним резервуаром, который заставляет его действовать как термос, из-за чего требуется очень много времени, чтобы спуститься от любого превышения температуры. Мой ПИД-регулятор имеет контрольный выход SSR и релейный выход аварийной сигнализации.

Аварийный сигнал можно запрограммировать как аварийный сигнал ниже предела со смещением от заданного значения.Я могу использовать источник питания на пять вольт, который у меня уже есть, для моего циркуляционного двигателя, чтобы он работал через реле аварийной сигнализации и управлял тем же SSR, что и управляющий выход.

Чтобы обезопасить себя и защитить ПИД-регулятор, я добавлю диод как к сигналу тревоги, так и к управляющему напряжению, чтобы предотвратить обратную подачу сигнала с одного выхода на другой.

Затем я установлю будильник, чтобы он оставался включенным, пока температура не поднимется выше заданного значения минус 7 градусов. Это позволит отрегулировать настройку ПИД-регулятора без учета начального повышения температуры.

Поскольку я знаю, что последние несколько градусов будут достигнуты без какой-либо подачи питания, мне бы очень хотелось отложить любое распознавание управляющего сигнала примерно на пять минут после отключения будильника, так как он все равно будет звонить для тепла.

Это та часть, для которой мне еще предстоит разобраться в схеме. Я имею в виду нормально замкнутое реле, включенное последовательно с управляющим выходом, которое удерживается разомкнутым сигналом тревоги.

Когда сигнал тревоги прекращается, мне нужна задержка порядка пяти минут, прежде чем реле вернется в свое нормально замкнутое состояние «выключено».

Я был бы признателен за помощь с задержкой отключения части схемы реле. Мне нравится простота начального дизайна на странице, но у меня такое впечатление, что с ними не справиться и около пяти минут.

Спасибо,

Джонатан Лундквист

Схема схемы

Следующая схема простой схемы таймера задержки от 5 до 20 минут может быть подходящим образом применена для указанного выше приложения.

Схема использует IC4049 для необходимых вентилей НЕ, которые сконфигурированы как компараторы напряжения.

5 ворот, включенных параллельно, образуют чувствительную секцию и обеспечивают триггер с требуемой временной задержкой для последующих каскадов буфера и драйвера реле.

Управляющий вход поступает от выхода тревоги, как указано в приведенном выше описании. Этот вход становится коммутационным напряжением для предлагаемой схемы таймера.

При получении этого триггера вход 5 вентилей НЕ изначально удерживается на логическом нуле, потому что конденсатор заземляет начальный триггер через потенциометр 2 м2.

В зависимости от настройки 2м2 конденсатор начинает заряжаться, и в момент, когда напряжение на конденсаторе достигает распознаваемого значения, вентили НЕ возвращают свой выход на низкий логический уровень, который преобразуется как высокий логический уровень на выходе правого сингла. НЕ ворота.

Это мгновенно запускает подключенный транзистор и реле для требуемого выхода задержки на контактах реле.

Поток 2M2 можно отрегулировать для определения требуемых задержек. Принципиальная схема

Принципиальная схема переключателя с мягкой защелкой

Схема с защелкой может « удерживать » во включенном или выключенном состоянии до тех пор, пока на нее не будет подан какой-либо внешний сигнал.Схема защелки сохраняет свое положение (включено или выключено) даже после удаления входного сигнала и может хранить один бит информации, пока устройство находится под напряжением. Для активного высокого сигнала он сохраняет единицу, а для активного низкого сигнала хранит ноль.

В этом проекте мы собираемся создать схему Soft Latch Circuit для включения и выключения электронного устройства нажатием одной кнопки. Эта схема известна как Soft Latch Switch . Схема с мягкой защелкой отличается от обычной схемы с защелкой, в с мягкой защелкой состояния включения и выключения могут быть изменены с помощью внешних средств (кнопки), но в обычной схеме с защелкой схема может быть зафиксирована только в одном состоянии. , а для изменения состояния необходимо отключить блок питания.Обычно регистры сдвига и триггеры используются в схеме с фиксацией, как та, которую мы использовали в схеме Clap-on-Clap-off.

С фиксацией можно сравнить с кнопкой Push-on-Push-off, где кнопка подключает цепь при однократном нажатии и отключает цепь при повторном нажатии. Здесь мы будем использовать транзистор BC547 NPN и транзистор BC557 PNP с обычной кнопкой для создания переключателя мощности с мягкой фиксацией . Эта схема с мягкой защелкой не требует наличия микроконтроллера или какой-либо микросхемы для включения и выключения.

Необходимые компоненты
  • Транзисторы: BC547 (2), BC557
  • Резисторы: 1 МОм, 470 кОм, 220 кОм (2), 100 кОм (2), 10 кОм, 1 кОм, 330 Ом
  • Кнопка
  • Конденсатор 1 мкФ
  • светодиод
  • Макет

Принципиальная схема

Принципиальная схема выключателя питания с мягким защелкиванием дана выше. Его легко собрать на макете или печатной плате.Компоненты, используемые в этой схеме, легко доступны и очень дешевы. Резисторы используются в качестве токоограничивающих резисторов, в то время как конденсатор используется для предотвращения ложного срабатывания схемы.

Работа цепи переключателя с мягкой защелкой

Транзистор BC547 является транзистором NPN, а BC557 — транзистором PNP. Транзистор BC547 можно включить, подав на его базу положительное напряжение; с другой стороны, BC557 можно включить, подав отрицательное напряжение на его базу.

Когда мы сначала подаем напряжение питания, нажимая кнопку , все три транзистора находятся в выключенном состоянии, а выходное напряжение равно нулю; таким образом, схема остается в выключенном или незафиксированном состоянии. В этом состоянии конденсатор C1 заряжается через резисторы R1 и R2. Когда мы нажимаем кнопочный переключатель, конденсатор C1 передает свое напряжение на базу транзистора Q3 через резистор R6. Это включает транзистор Q3, а транзистор Q3 включает транзистор Q2.Напряжение, возникающее на резисторе R4, будет держать Q2 включенным при отпускании кнопки. Q1 также включается в это время, и теперь цепь находится во включенном или заблокированном состоянии и остается в этом состоянии, даже если S1 разомкнут.

В этом состоянии транзистор Q1 теперь насыщен, вызывая разряд C1 через R2. Когда мы снова нажимаем кнопочный переключатель , конденсатор C1 находится в разряженном состоянии и передает нулевое напряжение на транзистор Q3, вызывая выключение транзистора.В результате все три транзистора находятся в выключенном состоянии, и схема снова возвращается в свое выключенное или разблокированное состояние . Поскольку Q1 теперь выключен, конденсатор C1 снова начинает заряжаться через резисторы R1 и R2. Таким образом, каждое нажатие переключателя следует одной и той же процедуре включения и выключения цепи.

Конденсатор используется для ограничения скорости процесса фиксации. Без конденсатора цепь будет включаться и выключаться очень быстро. Значения резисторов и конденсатора могут варьироваться в зависимости от области применения.

Я сделал эту схему переключателя с мягкой защелкой как на макетной, так и на перфорированной плате, , и после всех соединений на перфорационной плате мое оборудование выглядело следующим образом:

Применение схемы плавной фиксации
  1. Схема с мягкой защелкой хорошо подходит для портативных приборов с батарейным питанием, поскольку в выключенном состоянии она имеет нулевое напряжение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *