Пластик для 3d принтера своими руками – Пластиковая нить для 3D-принтера. Оборудование для производства. Создание нитей для 3D-принтеров своими руками

  • Home
  • Своими руками
  • Пластик для 3d принтера своими руками – Пластиковая нить для 3D-принтера. Оборудование для производства. Создание нитей для 3D-принтеров своими руками

Переработка пластика для 3D-печати, ПЭТ.

Статья относиться к Re-fill (переработанный ПЭТ пластик для 3D печати).

В этот раз мы рассмотрим переработку пластика в нить для 3D-печати.

Переработка не так проста, как кажется, и многие компании пытались и раньше, и сейчас начать использовать переработанную нить для своих 3D-принтеров. Любой, кто пытался изготовить свой ​​собственную нить в небольшом масштабе, поймет, как это сложно, даже при использовании новых пластиковых гранул.

В прошлом году мне очень повезло: мне достался 3DFilaprint, и это был большой проект по переработке, он научил меня, что делать качественную нить очень, очень сложно.

Я произвел несколько партий переработанного ABS для местного магазина. Я даже пытался переработать некоторые полипропилены и ПЭТ, с ограниченным успехом.

Конечно, самый простой способ использовать готовые гранулы PET, PLA и WoodFill. Создание моей собственной цветной WoodFill нити было очень веселым и увлекательным. Делать это профессионально — для своего домашнего 3d-принтера, чтобы из пластикового лома, предварительно очистив его, расплавив и выдавив, вовсе не легкая задача.

Я отправил эту фотографию неудачного печати выше — печать не удалось из-за механической ошибки принтера — это не вина некачественного филамента.

Я был весьма рад выиграть катушку Refil ПЭТ пластика. Он содержит до 90% переработанных пластиковых бутылок. Команда работала над этим пластиком последние 3 года. Сколько вы получаете — 750 граммов нити, в то время как общий вес, включая упаковку около 900 граммов. Как это выглядит —

У меня был полный рулон прозрачного ПЭТ и образец черной ABS нити, которая сделана из переработанной панели автомобиля. ПЭТ, действительно, очень прозрачный. На самом деле он так прозрачен, что я даже немного обеспокоен, что это действительно переработанный материал, а не новый. Я ожидал пузыри и, возможно, даже несколько незначительные цветовые оттенков или легкую непрозрачность.

Пластиковые бутылки ПЭТ и символ переработки.

Самым важным аспектом является точность размеров. Моя катушка была 1.75мм, и к ней я более требователен, чем к 2.85мм нити.​ ​Я измерил около 50 раз в начале, середине и конце. Вся катушка была 1.76мм — практически несущественное отклонение.Как им печатать? Я начал печать в нормальной температуре ПЭТ 230 градусов С и распечатал простую однослойную вазу для испытания оптической прозрачности.

Классическая бутылка от сингверс.

Отпечатано в натуральную величину — для сравнения — слева стеклянная, средняя напечатанана ПЭТ и правая — белый PLA. Это было когда-то ПЭТ-бутылкой, а теперь, после переработки и 3D-печати это опять ПЭТ-бутылка 🙂 Но печать при температуре 230 не очень хорошо для этого конкретного типа ПЭТ материала —

Насколько я могу судить, пузырьки не от содержания влаги. Понижение температуры печати исправляет эту проблему.

Вы не сможете получить четкие отпечатки, даже с хорошим ПЭТ, процесс печати слоев вызывает немного полупрозрачный окончательный отпечаток.

Мне очень нравится ПЭТ всех типов, я регулярно использую Taulman t-glass и ColorfabbXT. На изображении выше вы можете видеть ту же самую печать с этими различными ПЭТ-материалами.

Вы можете печатать все, что вы хотели ПЭТом, хотя это будет очень медленно.

Переведено с : http://richrap.blogspot.ru/2015/10/recycling-plastic-for-3d-printing-why.html

Как производят PLA для 3d-принтеров. Репортаж из цеха / Habr

Пистолетный выстрел послужил сигналом создать бизнес.

Дабы развеять мифы о том, что катушки с пластиком для 3d-принтеров растут на деревьях можно только покупать и перепродавать, а так же о том, что достаточно купить «все-в-одном» экструдер и начать свой бизнес, я отправился на разведку к московским производителям ABS и PLA (и HIPS). Действительно, я попал в профессиональный цех с промышленным оборудованием, с измерительными и управляющими приборами высокой точности, высокими стандартами к чистоте (ибо процесс производства очень ответственный) и общительными основателями (готовыми делиться знаниями с любознательной и думающей аудиторией), у которых куча технокреативных идей и планов по захвату

мира рынка. (+5 к уровню национальной гордости)

Как рассказал мне со-основатель компании: «Сначала мы увидели распечатанный нож для фруктов, и очищенный им от кожуры апельсин, затем шоком было видео с пистолетом Коди Уилсона и понеслось…»
В то время когда я написал на Хабре первые 2 статьи про 3d-принтеры (весна 2013), эти ребята уже начали создавать бизнес по производству пластика. Интересно, что и мне и им пришла в голову аналогичная идея, как можно дополнить поговорку, мол, человек может бесконечно смотреть на огонь, воду, как работает другой человек и на то, как печатает 3d-принтер.


Полилакти́д (ПЛА, PLA) — биоразлагаемый, биосовместимый, термопластичный, алифатический полиэфир, мономером которого является молочная кислота. Сырьем для производства служат ежегодно возобновляемые ресурсы, такие как кукуруза и сахарный тростник. Используется для производства изделий с коротким сроком службы (пищевая упаковка, одноразовая посуда, пакеты, различная тара), а также в медицине, для производства хирургических нитей и штифтов.


Под катом — основные этапы превращения сырья в катушки с PLA для 3d-принтеров

Панорама цехаСправа налево


Жила была кукурузка, потом ее перерабатывают в такие вот шарики и кладут в такие коробки

Из тонны сырья получается около 900 кг пластика


Так как это натурпродукт, он побаивается света и влаги, поэтому его оберегают вот таким мешком и куском силикагеля


А это «пылесос», которым зачерпывают 100 кг «кукурузных шариков» и отправляют в контейнер


Здесь сырье сушится, при этом запах стоит как в кондитерской

Добавляем «щепотку» красителя (тоже полностью натуральный, австрийское качество)


Здесь сырье разогревается и превращается в вязкую массу.
Под давление вала пропускаем сквозь нагревательные элементы.

Диаметр выходного отверстия «топки» около 3 мм, пластик приобретает нужный диаметр (1,75 мм) за счет того, что его тут же тянут, причем тяга очень точно настраивается


Ванна для охлаждения. Для ABS и PLA разные температуры


Диаметр остывшего пластика измеряется лазерным прибором. Установлена допустимая погрешность диаметра нити ±0,03 мм


Дистанционный мониторинг диаметра пластика

Cкорость протяжки нити через лазер 55 метров в минуту


Управление тягой. Именно тяга создает нужный диаметр. При помощи этого узла можно очень точно подбирать тягу моторов и тем самым регулировать диаметр пластика.


«Веретено» — управляет скоростью наматывания на катушку. Нет на КАТУШКУ.


Вот это — КАТУШКА.

Без пластика

Важно отметить равномерность заполнения катушки

После того как большая катушка заполнится, ее снимают и перематывают нить на маленькие (привычные для всех) катушки.
Обычные катушки попадают в заботливые руки девушки, которая комплектует коробку

Пакетик, защищающий от пыли, силикагель, защищающий от влаги, плотная коробка, защищающая от прямых солнечных лучей и наклейки. На наклейках указаны рекомендуемая температура плавления ( для ABS и PLA они разные), диаметр нити, вес и материал.


Отсюда они отправятся по всей Москве и странам СНГ

Чистота


На что я обратил внимание — в цеху очень чисто, приняты все меры, чтобы было как можно меньше пыли: заклеены скотчем окна, часто делается уборка, используется жидкость-антистатик, особо важные места укрываются полиэтиленом.
растворимый пластик
высокопрочный полистирол (HIPS), который по своим характеристикам очень напоминает обычный ABS (под который Rep 2X «оптимизирован»). HIPS растворяется в лимонене, веществе на цитрусовой основе. Сложные объекты можно печатать стандартным ABS или PLA, а HIPS использовать в качестве материала для поддержек. Конечный продукт погружается в ванну с лимоненом, где HIPS растворяется за несколько часов. Кроме того, HIPS имеет близкую рабочую температуру, хорошо клеится к ABS и платформе. Расход лимонена нужен маленький, так как большая часть поддержки обычно удаляется руками. Лимоненная ванна – слегка более сложная процедура, чем если бы это была обычная вода, но у нее есть свой плюс: после купания деталь пахнет лимоном.


Пара советов как выбрать хороший пластик.
PLA очень чувствителен к режиму хранения (в темноте, сухости и без пыли). Прутик должен быть чистый без вкраплений, ровный, без отслоений, на поверхности — лёгкий блеск.

Наличие инородных тел проверяется в месте разрыва. Если поднатужиться и разорвать кусочек пластика (а рвется там где «тонко»), то место разрыва должно быть однородным — это признак хорошего качества.

Долговечность/биоразалагаемость


(картинка для инвесторов-экологов)

а вот данные похожие на правду

примеры из PLA

Световой меч своими руками или выбор прозрачного пластика для 3D-печати / Habr

В процессе подготовки к косплей-фестивалю приходится решать много технических задач. Чтобы правдоподобно перенести в реальную жизнь то, что мы видим на большом экране, приходится идти на множество ухищрений, а в условиях ограниченных ресурсов и бюджета предельно обостряются творческие навыки.

Команда ЩитИМолотПапыТони предлагает свое решение задачи по изготовлению светового меча.



Один из редких материалов — прозрачные трубки. Их можно добыть в рекламных мастерских, где изготавливают световые конструкции. Мы проводили дежурный обзвон всех, кто занимается подобным делом в радиусе 500 километров вокруг Красноярска. Все, что нам могли предложить — уверенность в том, что какой-то завод поставит в план производства нужную трубку и ее — возможно — привезут месяца через 3-4. Плюс предоплата. Явно не наш вариант.

Решили делать все своими руками.

Вообще, делали мы не совсем джедайский меч, но конструкция схожая. Итак, чтобы создать светящееся лезвие, нужен прочный прозрачный пластик.

Для тестов мы взяли уже известные нам материалы и решили освоить новые:

  1. Натуральный PLA — широко известный всем работающим с 3d печатью материал. Отличается легкостью печати, высокой жесткостью.
  2. Натуральный Watson (SBS) — очень популярный пластик для печати тонкостенных изделий. Легкость в пост-обработке, позволяющая придать изделию ровность и прозрачность, сделала этот пластик лучшим выбором для создания ваз/бутылок/посуды/светильников и т.д. Им легко печатать, отличается умеренной мягкостью.
  3. Натуральный PETG — недавно завоевавший популярность материал. Отличается великолепной межслойной спайкой. Практического опыта работы с ним мало, будем наверстывать.
  4. Прозрачный ABS — очень загадочный материал. Натуральный ABS имеет цвет слоновой кости — белый с легким теплым желтоватым оттенком. Судя по всему, прозрачность достигается добавлением какого-то вещества. По заявлению производителя, печать и обработка не отличается от обычного ABS.

Принтер с высотой печати в 1 метр найти тоже не удалось, а собирать свой не хватало времени. Поэтому к тесту на прочность самой конструкции добавился тест на прочность склеивания.

Печать производилась со следующими настройками:

  • Температура печати и стола для каждого материала выбиралась ближе к верхней границе рекомендаций производителя — так выше вероятность получить более прочную спайку слоев
  • Сопло 1.2 мм, слой 0.6 мм, ширина экструзии 2.4 мм. Режим печати — spiral vase.
  • Обдув включен с 3 слоя даже для ABS  — есть риск что толстый слой пластика не будет успевать охлаждаться и конструкция поплывет.
  • Скорость печати 15 мм/сек — торопиться при печати таких объектов не стоит, чем ниже скорость тем лучше остывает достаточно толстый слой пластика.
  • Модель — простой цилиндр диаметром 30 мм и высотой 200 мм (высота печати подавляющего большинства популярных принтеров).

Самым прозрачным на вид выглядит PETG за счет отличной спайки слоев. Далее идет Watson. ABS и PLA делят третье место.


Поскольку высоты печати принтера не хватает для более-менее приличного меча, остается только клеить:

  • PLA — дихлорметаном.
  • Watson — сольвентом или ксилолом (попробуем оба варианта).
  • PETG — растворителей не нашлось, поэтому будем использовать цианоакрилат (он же суперклей).
  • ABS — ацетоном.

При печати спиральной вазой трубки получаются с одной стороны гладкими, с другой ступенькой:

Ступеньку спиливать не обязательно — она отлично подходит для стыковки двух верхних частей трубки:

Цианоакрилат твердеет благодаря влаге в воздухе, для ускорения процесса включили увлажнитель:

Готовые к тестам трубки:


Для начала все склейки прошли проверку на статическую нагрузку. К центру каждого стержня подвешивался пакет с гантелями массой 2 Кг.

PLA оказался самым жестким, 60 см трубки практически не прогнулось:

ABS уверенно держит 2 позицию по прогибу

PETG чуть-чуть отстает от ABS

Ожидаемо, Watson ведет себя мягче всех

Чтобы оценить прочность в динамике, решили ломать трубки синаем — тренировочным мечом для кэндо.

Все образцы выдержали минимум один хорошо поставленный удар. Осколки собрали для изучения.

PLA в первом месте склейки разошелся по шву, во втором сломался возле шва:


Watson разошелся по слоям и сломался:


PETG наполовину разошелся в месте склейки, наполовину треснул:

ABS разошелся по склейке. В месте удара видно изменение прозрачности пластика:


Промежуточный итог: все пластики держались достойно. Я, если честно, ожидал, что все будут ломаться с одного удара.

По итогам тестов в наш проекта  выбрали прозрачный ABS — в случае поломки легко и быстро клеится ацетоном/дихлорметаном и отлично обрабатывается (проходились шкуркой, чтобы свет от светодиодов был равномернее).

Получился такой меч:

Немного про освещение. Проблема светодиодных лент, да и светодиодов в целом — точечность. Без хитрых фокусов не создать эффект равномерного свечения ни в одном из видов пластика:

Однако если добавить в центр матовую трубку, то освещение выравнивается

Доступность различных прозрачных пластиков для 3d печати очень сильно расширяет границы возможностей для творчества.

Прозрачный ABS стал для меня приятным открытием — он сохранил качества обычного ABS (легкость в обработке, высокая прочность, доступные растворители, высокая термостойкость, огромный опыт печати этим материалом) и при этом расширил границы применения материала.

Благодарю за внимание, и да прибудет с вами Сила.

Подробный гид по выбору пластика для 3D-печати

Содержание:

Введение

Каждый, кто начинает заниматься 3D-печатью, задается вопросом: “Чем печатать, с чего начать?” На рынке десятки доступных пластиков для 3D-печати, производящихся в форме филамента — прутка намотанного на бобины. Разнообразие материалов может ввести неподготовленного человека в замешательство. Какой пластик для 3D-печати выбрать — именно тот вопрос, с решением которого данная статья поможет определиться начинающему 3D-печатнику.  


 

Диаметр

В стародавние времена, когда экструдеры были большими, а скорость печати — маленькой, инструкция по приготовлению пластика для печати начиналась приблизительно так: “Возьмите термоклей для клеевого пистолета…”.

В поиске материалов для 3D-печати, первые энтузиасты обратили внимание на пруток для сварки пластика, он был диаметром 3 мм. И долгое время диаметр 3 мм оставался стандартом для любительской 3D-печати.

Но у этого диаметра есть недостаток: для работы с таким прутком необходимо достаточно большое усилие на экструдере, что требовало установки дополнительного редуктора.


Из-за стремления к удешевлению оборудования, диаметр прутка был сильно уменьшен и сейчас составляет 1,75 мм, что теперь стало стандартом. Малый диаметр филамента позволяет проталкивать его шестеренкой, надеваемой непосредственно на двигатель экструдера.

Пруток диаметром 3 мм, из-за его повышенной жесткости, до сих пор любят производители топовых 3D-принтеров с экструдером типа “боуден”. Например, его используют принтеры производства Ultimaker.

При выборе пластика для печати решающее значение имеет назначение печатаемых деталей. Также важны характеристики используемого принтера, так как не каждый пластик подойдет к каждому принтеру — помимо диаметра филамента, имеют значение его температура плавления, жесткость, наличие или отсутствие у принтера подогреваемой платформы и закрытой камеры.

Перейдем к рассмотрению типов пластиков:

Материалы

PLA (Полилактид)

PLA (Полилактид) — биоразлагаемый пластик, в основе которого находится молочная кислота. Производится из сахарного тростника или кукурузы. Может также производиться из других натуральных продуктов, таких как картофельный крахмал или целлюлоза.

Параметры печати:

  • Температура экструзии — 190-230°C

  • Температура стола — 20-60°C

  • Обдув — желателен

  • Межслойная адгезия — хорошая

  • Адгезия к столу — хорошая

Технические характеристики:

  • Температура плавления — 175-180°C

  • Температура размягчения — 50°C

  • Температура эксплуатации изделий — -20+40°C

  • Твердость (по Роквеллу) — R70-R90

  • Относительное удлинение при разрыве — 3,8%

  • Прочность на изгиб — 55,3 МПа

  • Прочность на разрыв — 57,8 МПа

  • Модуль упругости при растяжении — 3,3 ГПа

  • Модуль упругости при изгибе — 2,3 ГПа

  • Температура стеклования — 60-65°C

  • Плотность — 1,23-1,25 г/см³

  • Минимальная толщина стенок — 1 мм

  • Точность печати — ± 0,1%

  • Усадка при изготовлении изделий — нет

  • Влагопоглощение — 0,2-0,4%

Данный пластик нетоксичен и представлен разными производителями в широкой цветовой гамме.

Является одним из самых популярных пластиков для 3D-печати. Хорошо подходит для печати дома. Причиной данной популярности являются следующие характеристики:

Плюсы:

  • Не дает усадки при печати, что позволяет получить точное соответствие размеров напечатанного изделия смоделированному.

  • Не требует подогреваемого стола и не боится сквозняков при печати, а значит может использоваться для печати на самом дешевом китайском принтере с открытым корпусом.

  • Нетоксичен. Во время печати приятно и несильно пахнет, что позволяет печатать им в квартире без использования специальной вытяжки.

  • Твердый, прочный и скользкий, широкий диапазон применений.

  • Производится из натуральных компонентов, может использоваться для контакта с пищевыми продуктами.

  • Биоразлагаемый, вещи из данного пластика не наносят вреда окружающей среде при утилизации.

Минусы:

  • Под воздействием воздуха и ультрафиолета, как и любой натуральный материал, со временем становится более хрупким, вследствие чего не рекомендуется для долговременного применения при больших физических нагрузках или использования без защитного покрытия на открытом воздухе.

  • Низкая температура размягчения (50°C) — в салоне машины, оставленной на солнце в жаркий день, легко размягчается и теряет форму.

  • Узкий температурный диапазон использования (-20 — +40°C).

  • Высокая твердость пластика затрудняет его механическую обработку.

  • Пластик некоторых производителей, из-за высокого содержания остаточных мономеров, склонен к образованию пробок в цельнометаллических хотэндах.

Исходя из достоинств и недостатков данного пластика, можем обозначить следующие способы его применения.

3D-печать крупногабаритных изделий.

3D-печать изделий с точными размерами.

3D-печать декоративных элементов мебели.

3D-печать элементов интерьерного декора.

3D-печать изделий под покраску.

3D-печать прототипов корпусов и механических изделий.
 


Для дома, 3D-печать деталей, 3D-печать моделей, макетирование, 3D-печать корпусов и электроники, 3D-печать фурнитуры, 3D-печать посуды, пищевой пластик для 3D-принтера, биоразлагаемый пластик для 3D-принтера, пластик для 3D-принтера pla.
 

ABS (акрилонитрилбутадиенстирол)

ABS (акрилонитрилбутадиенстирол) — ударопрочный пластик, очень популярен в промышленности и 3D-печати. Изделия из ABS достаточно прочны, поэтому его часто используют для печати функциональных объектов, имеющих практическое применение.

Параметры печати:

  • Температура экструзии — 210-245°C

  • Температура стола — 90-120°C

  • Обдув — нежелателен

  • Межслойная адгезия — средняя

  • Адгезия к столу — средняя

Технические характеристики

  • Температура плавления — 175-210°C

  • Температура размягчения — 100°C

  • Температура эксплуатации — -40+80°C

  • Твердость (по Роквеллу) — R105-R110

  • Относительное удлинение при разрыве — 6%

  • Прочность на изгиб — 41 МПа

  • Прочность на разрыв — 22 МПа

  • Модуль упругости при растяжении — 1,6 ГПа

  • Модуль упругости при изгибе — 2,1 ГПа

  • Температура стеклования — 105°C

  • Плотность — 1,1 г/см³

  • Точность печати — ± 1%

  • Усадка при изготовлении изделий — до 0,8%

  • Влагопоглощение — 0,45%

Выпускается различными производителями в широком ассортименте цветовых оттенков. Некоторые производители, для снижения стоимости, выпускают его без катушек.



 

Из-за невысокой стоимости сырья, является одним из самых доступных по цене пластиков.

Плюсы:

  • Хорошее сочетание прочности и упругости позволяет использовать его для изготовления механических изделий рассчитанных на долгий срок эксплуатации.

  • Широкий диапазон используемых температур позволяет эксплуатировать изделия из него в технических целях.

  • Простота механической обработки, в комплексе с химическим сглаживанием поверхности недорогими растворителями типа ацетона, позволяют делать декоративные изделия или корпуса с высоким качеством поверхности.

Минусы:

  • Плохо переносит воздействие ультрафиолетового излучения, желтеет на солнечном свете, что ограничивает применение неокрашенных поверхностей на улице

  • Не любит сквозняков при печати, что ограничивает применение дешевых принтеров с открытым корпусом.

  • Из-за относительно высокой усадки склонен к деламинации (расслоению), требует наличия подогреваемого стола, без него возникают проблемы с прилипанием к столу первого слоя.

  • В процессе печати может образовываться неприятных запах, печатать лучше в проветриваемом помещении, или оснащать принтер специальной системой вытяжной вентиляции, с выводом за пределы квартиры.

Эти свойства обуславливают следующие применения данного пластика:

Печать декоративных изделий с последующей обработкой.



 

Печать механических изделий.



 

Мелкосерийная печать корпусов и комплектующих.



 

Печать изделий, рассчитанных на долгий срок службы в отсутствие воздействия прямого солнечного света.



 

Для дома, 3D-печать деталей, 3D-печать моделей, производство, макетирование, протезирование, 3D-печать корпусов и электроники, 3D-печать механизмов, 3D-печать фурнитуры, пластик для печати табличек, 3d печать в рекламе, промышленный пластик для 3D-принтера, прочный пластик для 3D-принтера, abs пластик для 3D-принтера

HIPS (высокопрочный полистирол)

HIPS (высокопрочный полистирол) — достаточно мягкий пластик, создавался для использования совместно с ABS, для поддержек при двуэкструдерной 3D-печати. Этому способствовали его следующие свойства: одинаковая с ABS температура экструзии, низкая спекаемость с ABS, наличие растворителя (D-Limonene), который растворяет HIPS и не растворяет ABS.

Параметры печати:

  • Температура экструзии — 210-245°C

  • Температура стола — 90-120°C

  • Обдув — нежелателен

  • Межслойная адгезия — средняя

  • Адгезия к столу — средняя

Технические характеристики

  • Температура плавления — 175-210°C

  • Температура размягчения — 97°C

  • Температура эксплуатации — -40+70°C

  • Твердость (по Роквеллу) — L79

  • Относительное удлинение при разрыве — 64%

  • Прочность на изгиб — 37,6 МПа

  • Прочность на разрыв — 16,4 МПа

  • Модуль упругости при растяжении — 0,93 ГПа

  • Модуль упругости при изгибе — 1,35 ГПа

  • Температура стеклования — 55°C

  • Плотность — 1,05 г/см³

  • Точность печати — ± 0,5%

  • Усадка при изготовлении изделий — 0,4%

  • Влагопоглощение — 1%

Но его характеристики сделали возможным использование данного пластика и для самостоятельного применения. На данный момент выпускается различными производителями в широком диапазоне цветов, однако меньшем, чем для PLA или ABS.



 

Плюсы:

  • Меньшая усадка, чем у ABS, что делает его пригодным для печати точных изделий.

  • Меньшая плотность, чем у PLA, что позволяет печатать изделия, где необходима легкость конструкции.

  • Мягкость поверхности, которая гарантирует простоту механической обработки.

  • Матовость, которая придает эффект сглаженности изделиям.

  • Температура размягчения почти как у ABS, что позволяет использовать его в уличных условиях.

Минусы:

  • Как и ABS, требует подогреваемой платформы и подвержен деламинации, хоть и в меньшей степени.

  • Меньшая, чем у ABS, прочность на изгиб и, как следствие, большая хрупкость изделий.

  • Низкая устойчивость к ультрафиолетовому излучению, что ограничивает использование изделий на солнечном свете.

Все это позволяет использовать данный пластик для производства мебельного декора и интерьерных украшений.

Основное применение — это печать поддержек для ABS.



 

Для дома, 3D-печать моделей, производство, макетирование, 3D-печать фурнитуры, растворимый пластик для 3D-принтера, hips пластик для 3D-принтера

PETG

PETG (полиэтилентерефталат-гликоль) — относительно новый, по сравнению с тем же ABS, материал, но уже завоевавший заслуженное признание у 3D-печатников. Пластик достаточно ударопрочный, а спекаемость слоев получается такой, что при нагрузке изделие часто ломается против слоев, а не вдоль.

Параметры печати:

Обзор высокотемпературных FDM-пластиков для промышленной 3D-печати

Сфера применений аддитивных технологий широка: на одном полюсе — настольные принтеры «только PLA», для декоративного применения, на другом — установки для прямой печати металлами, между ними — оборудование и материалы в ассортименте. Чтобы понять, какие материалы необходимы для получения прочной и легкой детали, двигаемся от персональной печати к промышленной. PLA, ABS, SBS — расходники, которые знакомы всем печатникам. PETG, нейлон, поликарбонат — скорее экзотика. Но это далеко не самые серьезные материалы.

Где нужны суперпластики?


Пластики с выдающимися свойствами очень полезны в космосе. Нет, распечатать из пластика ракетный двигатель пока не получится, термостойкость даже близко не та, но для различных деталей вокруг он подойдет идеально. Пример — Stratasys и «климат-контроль» ракет Atlas V. 16 печатных деталей вместо 140 металлических — быстрее, легче, дешевле. И это не теоретический проект, это уже летало в космос.
Другой пример — авиация. Высота полета ниже, но применение более массовое. Здесь тоже есть резон снижать массу деталей, переходить на пластик там, где это возможно. Применяется в авиастроении и прямая печать металлами, когда речь идет уже о компонентах двигателей или деталях каркаса фюзеляжа, но менее нагруженные конструктивные элементы, такие как вентиляция салона и элементы интерьера, лучше делать из пластика. Это направление развивает, например, компания Airbus.
Спускаемся с небес на землю: здесь масса уже не так критична, интересны другие свойства инженерных пластиков. Стойкость к агрессивной химии и повышенной температуре, возможность создания недоступных для классических методов структур. При этом — более низкая цена, в сравнении с металлической печатью. Напечатанные изделия используются в медицине, нефтегазовой отрасли, химической промышленности. Как пример — выполненный для иллюстрации в разрезе смешивающий блок со сложной канальной структурой.

Отличие от привычных пластиков

Почему не запускать в космос PLA и не делать вентиляционные решетки салона самолета из ABS? К инженерным пластикам применяется ряд требований связанных с устойчивостью к высоким и низким температурам, огнестойкостью, механической прочностью. Как правило, все сразу. Так что, «плывущий» при взаимодействии с окружающей средой PLA или отлично горящий ABS в небо запускать нежелательно.

Теперь — к тому, какие, собственно, пластики используются в промышленной печати по технологии FDM/FFF.

Филаменты с поликарбонатом

Поликарбонат — распространенный в промышленности пластик с высокой ударопрочностью и прозрачностью, производится в том числе и для нужд FDM-печати. Материал лучше держит температуру, чем ABS, устойчив к кислотам, но чувствителен к УФ-излучению и разрушается под воздействием нефтепродуктов.

Чистый поликарбонат, PC


Предельная рабочая температура для изделий из поликарбоната — 130 °C. Поликарбонат биологически инертен, изделия из него выдерживают стерилизацию, это позволяет печатать упаковку и вспомогательное оборудование для медицины.
  • Stratasys PC, PC-ISO для принтеров Fortus. Первый — общего назначения, второй — сертифицированный на биосовместимость, для медицинского применения.
  • Intamsys PC;
  • Esun ePC;
  • SEM PC;
  • PrintProduct PC;

ABS/PC

Сплав поликарбоната и ABS сочетает возможность шлифовки и окраски, свойственную ABS, с более высокой ударопрочностью и рабочей температурой. Сохраняет прочность при низких температурах — до -50 °C. В отличие от чистого PC, лучше применим в тех случаях, когда необходимо ликвидировать слоистую структуру детали шлифовкой или пескоструйной обработкой. Применение: производство корпусов и элементов органов управления для штучного и мелкосерийного выпуска, замена серийных пластиковых деталей в оборудовании, детали к которому перестали выпускать.


Филаменты на основе полиамида
Полиамиды используются в производстве синтетического волокна, это популярный материал для печати методом выборочного лазерного спекания (SLS). Для печати по технологии FDM/FFF в основном используются полиамид-6 (капрон), полиамид-66 (нейлон) и полиамид-12. К общим чертам филаментов на основе полиамида относятся химическая инертность и антифрикционные свойства. Полиамид-12 более гибок и упруг, по сравнению с PA6 и PA66. Рабочая температура — около 100 °C, отдельные модификации — до 120.

Прежде всего, из полиамида печатают шестерни. Лучший материал для этой цели, с которым можно работать на обычном 3D-принтере с закрытой камерой. Стойкость к истиранию позволяет делать тяги, кулачки, втулки скольжения. В линейке многих производителей присутствуют композитные филаменты на основе полиамида, с еще большей механической прочностью.


Переходим к самому интересному

Работать с поликарбонатом или полиамидом можно на обычном 3D-принтере. С описанными далее филаментами сложнее, они требуют других экструдеров и поддержания температурного режима в рабочей камере, то есть, нужно специальное оборудование для печати высокотемпературными пластиками. Исключения бывают — например, в NASA, ради эксперимента, модернизировали популярный в США Lulzbot TAZ для работы с высокотемпературными филаментами.

Полиэфирэфиркетон, PEEK


Рабочая температура изделий из PEEK достигает 250 °C, возможен кратковременный нагрев до 300 — показатели для армированных филаментов. Недостатков у PEEK два: высокая цена и умеренная ударопрочность. Остальное — плюсы. Пластик самозатухающий, термостойкий, химически инертный. Из PEEK производится медицинское оборудование и импланты, стойкость к истиранию позволяет печатать из него детали механизмов.
Полиэфиримид, PEI

Он же — Ultem. Семейство пластиков, разработанных компанией SABIC. Характеристики PEI скромнее показателей PEEK, но стоимость заметно ниже. Ultem 1010 и 9085 — основные материалы Stratasys для печати функциональных деталей. PEI востребован в аэрокосмической отрасли — масса значительно меньше, в сравнении с алюминиевыми сплавами. Рабочие температуры изделий, в зависимости от модификации материала, достигают 217 °C по информации производителя и 213 — по результатам испытаний Stratasys.

Преимущества у PEI те же, что и у PEEK — химическая и температурная стойкость, механическая прочность. Именно этот материал Stratasys продвигает как частичную замену металлу в аэрокосмической отрасли, для беспилотников, изготовления оснастки для формовки, быстрой печати функциональных деталей в опытном производстве.

Компоненты системы охлаждения ракеты Atlas V и пластиковые детали для лайнеров Airbus, приведенные в качестве примера в начале обзора, выполнены из Ultem 9085.


Полифенилсульфон, PPSF/PPSU
Еще один материал, который сочетает в своих свойствах температурную стойкость, механическую прочность и устойчивость к химическим воздействиям. PPSF от Stratasys сертифицирован для аэрокосмического и медицинского применения. Позиционируется как сырье для производства вспомогательных медицинских приспособлений, может быть стерилизован в паровых автоклавах. Применяется в производстве деталей для лабораторных установок в химической промышленности.
Полисульфон, PSU
Менее распространен по сравнению с PPSU, обладает схожими физическими характеристиками, химически инертный, самозатухающий. Рабочая температура — 175 °C, до 33% дешевле по сравнению с PPSU.
Сравнение характеристик филаментов
* прокаливание в течение 2 часов при 140 °C.
** Apium PEEK 450 natural, результаты испытаний ударной вязкости аналогичными методами отсутствуют. Термостойкость указана для ненаполненного PEEK.

Данные приведены для филаментов Stratasys, за исключением PEEK. Если указан диапазон значений, значит испытания проводились вдоль и поперек слоев детали.

О композитных филаментах


Большинство материалов для FDM-печати имеют композитные версии. Если говорить о PLA, то в него добавляют порошки металлов или дерева, для изменения эстетических свойств. Инженерные филаменты армируются углеволокном, для увеличения жесткости детали. Влияние таких добавок на свойства пластика зависит не только от их количества, но и от размера волокон. Если мелкодисперсный порошок можно считать декоративной присадкой, то волокна уже значительно изменяют характеристики пластика. Само по себе слово Carbon в названии материала еще не означает выдающихся свойств, нужно смотреть результаты испытаний. Для примера: Stratasys Nylon12CF обладает почти вдвое большей прочностью на разрыв, при испытании вдоль слоев, чем Nylon12.

Экзотический вариант — реализация непрерывного армирования от Markforged. Компания предлагает армирующий филамент для совместной FDM-печати с другими пластиками.

Другие специфические свойства


Инженерные пластики — это не только стойкость к высоким температурам и механическая прочность. Для корпусов или боксов для хранения электронных устройств, а также в условиях работы с легковоспламеняющимися летучими жидкостями необходимы материалы с антистатическими свойствами. В линейке Stratasys это, например, ABS-ESD7.
Обычный ABS не обладает стойкостью к ультрафиолетовому излучению, что ограничивает его использование без защитного покрытия на открытом воздухе. В качестве альтернативы предлагается ASA, характеристики которого близки к ABS, за исключением наличия УФ-стойкости.
Оригинальная альтернатива

Пластик может заменить металл во многих областях, так как превосходит его в легкости, тепло- и электроизоляции, стойкости к реагентам. Но до физических показателей металлических изделий распечатки из лучших FDM-филаментов не дотягивают.


Химический гигант BASF предлагает FDM-филамент Ultrafuse 316LX, с массовой долей нержавеющей стали в 80%. Деталь печатается на FDM-принтере, а затем помещается в печь, где связующий пластик выжигается, а металл спекается. Получаемая таким образом деталь выходит значительно дешевле изготовленной методом прямой печати металлом. При наличии FDM-принтера и подходящей печи, нового оборудования вообще не понадобится.
Отметим, что похожее решение предлагает компания Virtual Foundry — ее Filamet, с порошком бронзы или меди, запекается аналогичным образом. Выбор металла намекает скорее на декоративное, чем на инженерное применение.

У AIM3D своя реализация подобного принципа — принтер ExAM 255 работает не с филаментом, а с гранулами. Это позволяет использовать для FDM-печати сырье, которое обычно применяется в установках MIM, Metal Injection Molding. Для спекания детали компания предлагает печь ExSO 90. Можно печатать и пластиковыми гранулами, что обычно дешевле, чем использование традиционного филамента.

Специальная техника для инженерных пластиков

Подытожим. Если совсем в двух словах: рассмотренные расходники отличаются от привычных материалов высокой температурой печати, что требует применения специального оборудования, и серьезной термостойкостью и механической прочностью изготовленных деталей. Для работы с такими филаментами нужны 3D-принтеры с рабочей температурой экструдера от 350 °C и термостабилизированной рабочей камерой. Специалисты Top 3D Shop помогут вам с подбором промышленного 3D-принтера и пластиков для решения самых интересных задач.

Хотите больше интересных новостей из мира 3D-технологий?

Подписывайтесь на нас в соц. сетях:

Экскурсия на завод REC. Как делают пластик для 3D принтеров?

Добрый день, друзья! Мы хотели бы поделиться, как изготавливаются расходные материалы для 3D-принтеров. Представляем Вам фотоотчёт с завода компании REC.

[IMG]http://habrastorage.org/files/e4a/1b7/d89/e4a1b7d89dd94c3ca48ccb0c50a27765.jpg[/IMG]

[IMG]http://habrastorage.org/files/48d/d9c/1d1/48dd9c1d17334f138d1223a9b05f8d7a.jpg[/IMG]

Немного теории:

Полилакти́д (ПЛА, PLA) — биоразлагаемый, биосовместимый, термопластичный, алифатический полиэфир, мономером которого является молочная кислота. Сырьем для производства служат ежегодно возобновляемые ресурсы, такие как кукуруза и сахарный тростник. Используется для производства изделий с коротким сроком службы (пищевая упаковка, одноразовая посуда, пакеты, различная тара), а также в медицине, для производства хирургических нитей и штифтов.

[IMG]http://habrastorage.org/getpro/habr/post_images/ebc/8be/e96/ebc8bee96df9e7884aa8556846a02aee.jpg[/IMG]

Панорама цеха:

[IMG]http://habrastorage.org/files/e2f/369/b7c/e2f369b7c5cb4907a655f0c374f88430.jpg[/IMG]

[IMG]http://habrastorage.org/files/bcf/70e/85b/bcf70e85b72a4700ac89bf111cfd286a.jpg[/IMG]

[IMG]http://habrastorage.org/files/f53/1ed/b26/f531edb269314a5c8d9460e6bec7263b.jpg[/IMG]

[IMG]http://habrastorage.org/files/ee5/c3c/fa2/ee5c3cfa2836401c86841c6c276aeba6.jpg[/IMG]

[IMG]http://habrastorage.org/files/493/d42/0c0/493d420c09664be9a365278832e7788c.jpg[/IMG]

Как выглядит сам процесс производства:

[IMG]http://habrastorage.org/files/fca/e28/da7/fcae28da71c34e7a9f396be6395b9c95.jpg[/IMG]

ПЛА-пластик производят из кукурузы или сахарного тростника. Сырьем для получения служат также картофельный и кукурузный крахмал, соевый белок, крупа из клубней маниока, целлюлоза.

При переработке вышеупомянутых растений получают пластиковые шарики, которые укладывают в коробки и отправляют на дальнейшие циклы производства:

[IMG]http://habrastorage.org/files/817/fe1/e1a/817fe1e1acc649acbf499520da9266ff.jpg[/IMG]

Из тонны сырья получается около 900 кг пластика

[IMG]http://habrastorage.org/files/4f1/fcd/138/4f1fcd1388fd45baac40bf034386db7d.jpg[/IMG]

PLA-пластик побаивается света и влаги, поэтому его упаковывают в герметичные мешки в которых есть силикагель.

[IMG]http://habrastorage.org/files/8ff/58d/86a/8ff58d86af2940ca8009fd10a7c32b5c.jpg[/IMG]

А это «пылесос», которым зачерпывают 100 кг «кукурузных шариков» и отправляют в контейнер

[IMG]http://habrastorage.org/files/012/b79/2fc/012b792fce424b6a9f0f455c7836a6e7.jpg[/IMG]

Здесь сырье сушится, при этом запах стоит как в кондитерской

Добавляем «щепотку» красителя (тоже полностью натуральный, австрийское качество)

[IMG]http://habrastorage.org/files/865/9cb/fd4/8659cbfd46b546049a379ecefba5623e.jpg[/IMG]

[IMG]http://habrastorage.org/files/742/eb0/668/742eb06683fe4e778e0057fbc3a6a1ef.jpg[/IMG]

[IMG]http://habrastorage.org/files/f5d/dab/b83/f5ddabb83a744f7082517a4d9c49da13.jpg[/IMG]

Здесь сырье разогревается и превращается в вязкую массу.

Под давление вала пропускаем сквозь нагревательные элементы.

Диаметр выходного отверстия «топки» около 3 мм, пластик приобретает нужный диаметр (1,75 мм) за счет того, что его тут же тянут, причем тяга очень точно настраивается

[IMG]http://habrastorage.org/files/dd8/6ed/6ca/dd86ed6ca4c14b77a3ff0b9c6be9d254.jpg[/IMG]

Ванна для охлаждения. Для ABS и PLA разные температуры

[IMG]http://habrastorage.org/files/596/1d3/fc9/5961d3fc9fa6499fa5bf0f0b325f99fd.jpg[/IMG]

Диаметр остывшего пластика измеряется лазерным прибором. Установлена допустимая погрешность диаметра нити ±0,03 мм

[IMG]http://habrastorage.org/files/16e/baf/f9a/16ebaff9ab1d48a6bac10012e02ae0d1.jpg[/IMG]

Дистанционный мониторинг диаметра пластика

Cкорость протяжки нити через лазер 55 метров в минуту

[IMG]http://habrastorage.org/files/c0f/21f/d40/c0f21fd4007d4659bf81bc417c2a84ae.jpg[/IMG]

Управление тягой. Именно тяга создает нужный диаметр. При помощи этого узла можно очень точно подбирать тягу моторов и тем самым регулировать диаметр пластика.

[IMG]http://habrastorage.org/files/630/a71/f80/630a71f808a04e6081b45bec6a0cc967.jpg[/IMG]

«Веретено» — управляет скоростью наматывания на катушку. Нет на КАТУШКУ.

[IMG]http://habrastorage.org/files/4a2/212/86b/4a221286b91b45f6b018a94b1c100f65.jpg[/IMG]

Вот это — КАТУШКА.

Без пластика

[IMG]http://habrastorage.org/files/dfc/8f5/23a/dfc8f523a9c94e06888912d853bb48d9.jpg[/IMG]

Важно отметить равномерность заполнения катушки

После того как большая катушка заполнится, ее снимают и перематывают нить на маленькие (привычные для всех) катушки.

Обычные катушки попадают в заботливые руки девушки, которая комплектует коробку

[IMG]http://habrastorage.org/files/179/84c/8ea/17984c8ea7bb4e138062bed89e57fad2.jpg[/IMG]

Пакетик, защищающий от пыли, силикагель, защищающий от влаги, плотная коробка, защищающая от прямых солнечных лучей и наклейки. На наклейках указаны рекомендуемая температура плавления ( для ABS и PLA они разные), диаметр нити, вес и материал.

[IMG]http://habrastorage.org/files/057/c5c/c2f/057c5cc2f42340089cecc2dcc549b233.jpg[/IMG]

Отсюда они отправятся по всей Москве и странам СНГ

Чистота

[IMG]http://habrastorage.org/files/2cc/43b/b9d/2cc43bb9d30c4d8593fa8fbb765048bc.jpg[/IMG]

В цеху очень чисто, приняты все меры, чтобы было как можно меньше пыли: заклеены скотчем окна, часто делается уборка, используется жидкость-антистатик, особо важные места укрываются полиэтиленом.

[IMG]http://habrastorage.org/files/a43/667/880/a4366788008f4a93bc943a126981d5cf.jpg[/IMG]

Пара советов как выбрать хороший пластик.

PLA очень чувствителен к режиму хранения (в темноте, сухости и без пыли). Прутик должен быть чистый без вкраплений, ровный, без отслоений, на поверхности — лёгкий блеск.

[IMG]http://habrastorage.org/files/862/464/af2/862464af22094d4dbd8f96c59b437b99.jpg[/IMG]

Наличие инородных тел проверяется в месте разрыва. Если поднатужиться и разорвать кусочек пластика (а рвется там где «тонко»), то место разрыва должно быть однородным — это признак хорошего качества.

Долговечность/биоразалагаемость

[IMG]http://habrastorage.org/getpro/habr/post_images/160/c28/b8a/160c28b8aee21019cf21328ea1760815.jpg[/IMG]

(картинка для инвесторов-экологов)

а вот данные похожие на правду

[IMG]http://habrastorage.org/files/5c3/8d7/899/5c38d78991a240c2915fa1fdcdd84091.jpg[/IMG]

примеры из PLA

[IMG]http://habrastorage.org/getpro/habr/post_images/ae0/e36/db6/ae0e36db66f5409756b7f430812cb1da.jpg[/IMG]

[IMG]http://habrastorage.org/getpro/habr/post_images/da5/6f8/866/da56f88660badccaa6bc6b84c63be339.jpg[/IMG]

Изготовление прутка из пластиковых PET бутылок 3D принтера своими руками


Если у Вас уже есть готовый бутылкорез для пластиковых бутылок сделанный своими руками и 3D принтер, то не составит огромного труда сделать механизм для изготовления PET прутка из лент от пластиковых бутылок, для дальнейшего использования его в качестве материала печати моделей на своем принтере.
В качестве нагревательного элемента, через который будет проходить пластиковая лента из бутылки, можно использовать обыкновенный МЛТ-2 резистор на 2 ватта. Для источника питания 5 вольт подойдет резистор на 3 Ом, если напряжение питания 12 вольт – то резистор на 5,6-6 Ом. У резистора нужно обломать выводы, и в этих местах просверлить отверстия для входа и выхода пластика. По моему опыту, советую, входное отверстие аккуратно (до керамики) просверлить сверлом на 3 мм, а выходное – 1,3-1,4 мм.

Чтобы прогрев резистора был равномерным, и тепло от него не рассеивалось в воздух, резистор следует теплоизолировать. Я для этого использовал небольшой кусок асбестового листа и каптоновый теплостойкий скотч.

Для протяжки формованного прутка, изначально, хотел использовать шаговый двигатель, но его мощности оказалось мало. «Под руку» попался листопротяжный механизм, который изначально находился в портативном ксероксе. Подобные механизмы еще можно встретить в старых принтерах, МФУ. Коэффициент редукции на них большой, позволяющий на основе этого механизма сделать элемент конструкции для протяжки расплавленного прутка от пластиковой бутылки.

Остается только подобрать скорость протяжки прутка, изменяя напряжение на двигателе от используемого механизма. От скорости может зависеть ширина (диаметр) получаемого PET прутка.
Возможно, кому-нибудь будет полезны файлы freecad и модели для 3D принтера, которые я разрабатывал, их можно скачать ЗДЕСЬ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *