Схема электрошокера своими руками – Как сделать электрошокер своими руками в домашних условиях: инструкция с картинками, схемой и видео

  • Home
  • Своими руками
  • Схема электрошокера своими руками – Как сделать электрошокер своими руками в домашних условиях: инструкция с картинками, схемой и видео

ЭЛЕКТРОШОКЕР ОСА

   После жаркиx будниx дней наконец то выxодные, а валятся на диване без дела не оxота. и вот решил разогреть паяльник по быстрому и смастерить очередной электрошокер. Данный электрошокер-оса я бы не назвал полностью боевым, но круто напугать человека и даже сбить его с ног таким шокером вполне возможно. Для начала решил сделать корпус. Нашел разобранный кислотный аккумулятор от китайского автомобиля с дистанционным управлением. Корпус в самый раз, только чуток нужно дополнить для красоты. Прежде на листке бумаги нарисовал вид электрошокера, который собирался делать. Взял стеклотекстолит и обрезал по размерам которые у меня получились на рисунке. 

Схема электрошокера 800

   В корпусе аккумулятора от радиоуправляемой машинки были три секции (банки) и это пошло на пользу. Решил поместить отдельные части электрошокера в отдельные секции. А из чего состоит стандартный электрошокер? В первую очередь блок питания, потом преобразователь напряжения, блок накопительныx конденсаторов и наконец высоковольтная катушка, а если шокер выполнен на умножителе напряжения — тут все намного проще. Здесь блок конденсаторов с искровым разрядником и высоковольтной катушкой просто заменен на умножитель напряжения. В первой секции установил 4 никелевые батарейки с напряжением 1,2 вольт и с емкостью 400 миллиампер. Во второй собран преобразователь. Транзисторы типа КТ805, КТ819, но в конструкции электрошокера применил КТ817, поскольку более мощные не поместились в секции. Трансформатор намотан на ферритовой чашке. 

Корпус электрошокера от аккумулятора

   Первичная обмотка содержит 10 витков с отводом от середины, затем изолируем ее скотчем и мотаем вторичную обмотку, а содержит она 300 витков провода с диаметром 0,08 миллиметра, через каждые 100 витков нужно ставить изоляцию. Конденсаторы неполярные керамические имеют емкость 0,1 микрофарад. Далее после намотки трансформатора поместил его в секцию. После нужно изготовить высоковольтную часть электрошокера. Диод типа кц106 или аналогичный. Конденсатор накопитель имеет емкость 0,22 микрофарад и расчитан на напряжение 400 вольт.

электрошокер в аккумуляторе 1002

   Искровый разрядник и высоковольтная катушка добыты от блока преобразователя ксеноновыx фар для автомобиля. Высоковольтная катушка в первичной обмотке содержит 10 витков провода диаметром 0,7 миллиметра. Вторичная обмотка — 800 витков тонкого провода в лакоизоляции залита эпоксидной смолой. В качестве штырьков — разрядников служат обыкновенные гвозди.

электрошокер готов к бою

   Готовая конструкция шокера обмотана черной изоляционной лентой. Зарядным устройством электрошокера оса служит обыкновенное зарядное устройство от мобильного телефона. Всё, шокер готов, удачи вам в творчестве — АКА. 

   Форум по электрошокерам

   Обсудить статью ЭЛЕКТРОШОКЕР ОСА


3.000.000 вольт для учебных целей / Neuron Hackspace corporate blog / Habr

(3.000.000 вольт — надпись на коробке, реальное напряжение на выходе неизвестно)

Вдохновленный экспериментами луганских коллег и интересом к распилу лазера, решил продолжить исследовать внутренности мощных устройств, которые можно легко купить в интернет магазине. (Благодарю magnad.ru за предоставленное оборудование.)

Немного истории

В 1852 г. Альберт Суненберг и Филипп Рехтен запатентовали технологию, по которой гарпун соединялся проводом с оборудованием на корабле, вследствие чего животное получало сильный разряд электрического тока. Прошло 100 лет, а дальше китов дело не двинулось.

Дальним родственником электрошокеров можно считать электрический хлыст для животных, запатентованный американцем Генри Диксоном еще в 1915 году. Его идею развили в своем электрошоковом устройстве другие изобретатели, пока, наконец, некто Джон Кавер не придал этому изделию все черты современного электрошокера. В 1974 году он оформил патент на устройство под названием «Оружие для обездвижения и задержания», подразумевающее поражение человека переменным током высокого напряжения.

О чем подумал я в первую очередь когда мне попался в руки электрошокер?

???О том что можно захватить живого пришельца

Ностальгия по UFO
Слабо парализовать вот этого товарища?



Под катом несколько фоток и описание того, что находится внутри электрошокера-фонарика, плюс как сделать электрошокер самому и как сделать бронежилет против электрошокера


(В ходе эволюции десептиконы электрошокеры научились маскироваться под разные предметы)


(Мой электрошокер (Молния Premium) ненавязчиво «вшит» в диодный фонарик)


(Прошелся по Хакспейсу с предложением просто подержаться за проводки)


(Цельноалюминиевый корпус не рассчитан, чтобы его раскручивали, но разве это кого-то остановит?)


(Без «соединительного» скотча. Справа «отсек» с трансформатором, по центру — отсек с переключателем, слева — отсек с конденсаторами)

Все модули залиты смолой, пока расковыривал, ощущал себя палеонтологом на раскопках. Ниже — то что удалось извлечь при помощи плоскогубцев, отвертки и ножовки по металлу.


(Катушки, конденсаторы, диоды, осколок ферромагнетика)

Принцип действия

Усиленное сокращение мышц в области контакта с электродами приводит к быстрому их истощению вследствие разложения сахара в крови. Эти процессы в совокупности с умеренными болевыми ощущениями и сильным психологическим воздействием приводят к кратковременному обездвиживанию мышц и временной недееспособности нападающего. (Думаю, что девушки сообразят какую мышцу стоит обездвижить/истощить первым делом)

Резкий звук («трещотка») приводит к замешательству на несколько секунд, чем можно воспользоваться.

Бронежилет против шокера

Нашлись умельцы, которые смастерили из карбоновой стропы подкладку под пиджак, защищающую от электрошокера

Сделай сам

Еще один товарищ очень огорчился малой мощностью шокеров, которые есть в свободной продаже, и решил смастерить
свой
шокер.
Как говорит автор, «простым смертным запрещено носить/использовать шокер мощностью более 3 Ватт» и с легкостью спаял из остатков плеера шокер мощностью 70 Ватт


похожие компоненты

Более подробное описание тут

Видеоуроки по сборке самого мощного шокера


Будучи школьником, одной из самых прикольных электрических игрушек был пьезоэлемент из зажигалок. Чувствовал себя если не Рэйденом, то уж Джокером из старого Бэтмена. Плюс проводил кучу опытов с тем, в какое место себя щелкнуть, чтоб определенный пальчик дернулся.

Если создатель FidoNet учит детей взламывать машины, а скейтбордист учит афганских детей физике и истории во время катания на доске, так почему бы не сделать труды/ОБЖ/электродинамику более наглядной и не творить полезные штуки?

Понятное дело, что стоит вопрос безопасности/адекватности и ответственности (но я из медицинского жгута в 5-м классе собирал рогатку которая пулей от макарова пробивала кровельную жесть, что намного опаснее шокера и дальнобойнее), зато как интересно-то будет мальчишкам.

Интересно, будут ли «трудовики» нового поколения рассказывать школьникам как собрать шокер или лазер самостоятельно?

Электрошокер из эконом лампы

Приветствую, Самоделкины!



Перед вами электрошоковое устройство повышенной мощности АК22Х (автор AKA KASYAN).

Конструкции уже много лет, были многочисленные модификации и доработки, а именно эта модель была создана автором около 3-ех лет назад и всегда хранилось под кроватью так сказать на всякий случай. Этому электрошокеру посвящена не одна статья (на сайте автора проекта AKA KASYAN, все ссылки указаны под оригинальным видеороликом автора данного проекта, ссылка ИСТОЧНИК в конце статьи), схему успешно повторили сотни людей, кстати, сама схема находится в свободном доступе и любой желающий, естественно при наличии прямых рук и некоторых необходимых познаний в электронике его может повторить. На канале автора есть много видео на эту тему, кому интересно ссылки в описании под видео. А теперь перейдем к делу. В прошлом году AKA KASYAN снял схожий видеоролик о том как сделать электрошокер из запчастей старого принтера, сегодня мы продолжим эту тему и рассмотрим вариант сборки электрошокера с применением компонентов от старой эконом лампы.

Газоразрядные (или энергосберегающие лампы) имеют электронный источник питания или по-другому — балласт, который находится в цоколе лампы. Для нашего шокера нужны 2 такие эконом лампы, но если есть, то возьмите 3. Но лампы должны быть одинаковой мощности. В данном случае они на 105 Вт.


Аккуратно разбирая цоколь лампы, достаем плату балласта. По сути это автогенераторный полумостовой преобразователь напряжения, которому было посвящено бесчисленное количество видеороликов на YouTube. Нам нужно разобрать обе лампы. Нужны только платы, колбы можно утилизировать.


Разогреваем паяльник и выпаиваем в первую очередь дросселя. Их ни с чем не спутаешь.


Далее выпаиваем указанный конденсатор.


Он высоковольтный с напряжением 1000-1600 В, на каждой плате имеется только один такой конденсатор. Следующим делом выпаиваем транзисторы, тут их два, хотя нам нужен только один.


Это высоковольтные транзисторы обратной проводимости, в данном случае стоят ключи EP13007, у вас же они могут быть иными из той же линейки, все зависит от мощности подопытной лампы. Тут нужно указать то, что транзисторы обязательно должны быть рабочими, их можно проверить с помощью транзисторного тестера или тестера полупроводников.

На плате довольно большое количество стандартных диодов. Среди них можно найти несколько импульсных диодов серии fr107, находим их, и тоже выпаиваем.


Еще раз повторю, нужные диоды именно с маркировкой fr107. Итак, с компонентами разобрались, идем дальше. Следующим делом разбираем дросселя, убираем штатную обмотку.

Если обратить внимание на сердечник, то между половинками можно увидеть зазор, центральная часть одной из половинок сердечника короче, чем у другого.

Так вот, у нас два сердечника, нам нужны те половинки, которые по длиннее, из которых мы и соберем новый трансформатор.

По идее мы будем собирать автогенераторный преобразователь и там нужен зазор, но он должен быть небольшим, хотя схема будет работать даже без зазора.

Наша схема может питаться от аккумуляторов с напряжением от 3,7 до 9В. Один или пара литиевых аккумуляторов — самый раз.

Каркас будем использовать родной, только намотаем новую обмотку. А теперь просьба быть максимально внимательным, так как сейчас будет показан подробный процесс намотки высоковольтного трансформатора, по технологии автора проекта, которая еще никогда его не подводила. Для начала нам нужен провод, диаметр может быть от 0,4 до 0,6 мм, больше для этой схемы нет смысла.

Берем 2 провода, скручиваем их концы вместе и начинаем намотку. Обмотка должна содержать около 20 витков. Мотаем в 2 ряда так, как это показано ниже (более подробно это показано в видеоролике в конце статьи).


Далее выводим конец обмотки и фиксируем на штырь.

Следующим делом берем самый обычный, самый дешевый прозрачный скотч и изолируем намотанную обмотку десятью слоями скотча.


Особое внимание уделяем на изоляцию мест отвода в первичной обмотке.
После намотки и изоляции первичной обмотки, приступаем к намотке вторичной, именно в ней будет образовываться высокое напряжение.

Обмотка состоит из 800-1000 витков проводом от 0,05 до 0,1 мм. Такой провод можно взять из катушки реле из дешевых китайских настенных часов, ну или купить в радиомагазине.

Намотка этой обмотки послойная, каждый слой содержит 80-100 витков. Поверх намотанного слоя ставится изоляция из 3-ех – 4-ех слоев скотча, провод обмотки никогда не отрезается, а идет с изоляцией.

Для начала к проводу обмотки припаиваем кусочек многожильного провода, желательно в мягкой изоляции. Место пайки прячем под в термоусадку.


Укладываем провод вторичной обмотки максимально равномерно, стараясь избежать перехлестов, но если они будут, то ничего страшного.
После намотки первого ряда обмотку изолируем. Мотаем второй, затем опять изоляцией и так до получения указанного количества витков.


После завершения намотки провод срезаем, припаиваем к нему многожильный провод, место пайки прячем под термоусадку, в общем все как вначале. Далее собираем трансформатор. Половинки сердечника фиксируем заранее нарезанными полосками изоленты.

Следующим делом проверяем вторичную обмотку на предмет обрыва. Сопротивление обмотки в данном случае около 135 Ом, все зависит от количества витков и диаметра провода, так что у вас оно может быть больше или меньше, главное, чтобы не было обрыва, в этом случае мультиметр покажет бесконечно большое сопротивление.


Теперь вернёмся к первичной обмотке, ее нужно сфазировать. Подключаем начало первой полуобмотки с концом другой. Если все мотали как показывал автор, просто соединяете указанные выводы для получения средней точки на схеме, именно туда подается плюс от источника питания.

Трансформатор готов, а теперь перейдем к схеме электрошокера.

Это высоковольтный повышающий преобразователь автогенераторного типа. На выходе установлен умножитель напряжения собранный на конденсаторах и диодах, которые мы ранее выпаивали. На вторичной обмотке у нас довольно большое напряжение, а диоды типа fr107 всего на 1000В, вот поэтому несколько диодов подключены последовательно, таким образом мы получаем диодный столб, обратное напряжение которого уже гораздо больше чем у отдельно взятого диода. Можно последовательно подключить как 2, так и 3 диода, как это показано на схеме.

На выходе умножителя установлена цепочка из последовательно включенных резисторов, они нужны для того, чтобы разрядить остаточное напряжение на конденсаторах умножителя после отключения электрошокового устройства.

На данном этапе необходимо проверить работу ранее собранного трансформатора. Для этого собираем указанную часть схемы.

При питании от источника 9 В, схема генератора потребляет ток всего 200 мА, что очень хорошо.

На выходе трансформатора мы получаем переменное напряжение высокой частоты. Выглядит это примерно вот так:


Дуга растягивается на достаточно большое расстояние, следовательно, схема работает так как нужно. Теперь осталось собрать умножитель, который будет повышать напряжение с трансформатора до еще большего значения.

С подключением умножителя разряды уже выглядят вот так:

Увеличить длину разрядов или пробой воздуха можно добавлением ступени умножения, но даже с двумя конденсаторами шокер трещит неплохо. Ну а с тремя конденсаторами получим кое-что покруче:

Осталось только все это дело установить подходящий корпус и все. Схему умножителя с высоковольтным трансформатором очень советую залить эпоксидной смолой, ну или парафином на крайний случай. Насколько он опасен и можно ли им обороняться? Увы для самообороны такой вариант не самый лучший из-за слишком малой выходной мощности, к тому же пробой воздуха небольшой. Если на нападающем толстая одежда, то такой шокер будет бесполезен. Речь идет конкретно про этот электрошокер, но кусается он довольно больно.
Ну а на этом все. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Злой шокер своими руками | Параметры трансформатора злого шокера

Собрать это устройство хотелось давно, много-много лет назад, практически сразу как только схема была найдена в интернете. Были закуплены детальки и даже что-то получилось, но из-за недостатка знаний, а главное – технологий, дальше настольной трещалки дело не пошло. Секционный трансформатор из полипропиленовой трубы пропитанный парафином имел нездоровые габариты и низкую надёжность, было непонятно как сделать корпус и ряд других причин не дали реализовать идею до конца. Спустя годы многое поменялось и было решено повторить.

Узнать что такое злой шокер можно на сайте автора по ссылке http://ecdinside.info/

Ниже публикую схему взятую с этого же сайта, описания схемы делать не буду т.к. оно есть на сайте автора, которому, пользуясь случаем, выражаю огромную благодарность за проделанную работу, созданию технологии и поддержку. Спасибо, handmade!

Сокращенно: преобразователь непрерывно заряжает два конденсатора, поджигающий и боевой, по достижению 1400 вольт пробивается разрядник на первичную обмотку выходного трансформатора, возникает искра-пробой, в которую разряжается боевой конденсатор.

Насколько я понял, схема несколько отличается от первоначальной. В ней оба конденсатора 0.33мкф, у меня – 0.33.

Но т.к. просто копировать чей-то результат не интересно, да и отличия в деталях и материалах может дать совершенно непредсказуемые результаты, я решил провести серию экспериментов что бы понять какие изменения можно вносить в самую главную часть шокера – выходной высоковольтный трансформатор, и как они будут влиять на параметры выходного сигнала.

Для разминки было сделано несколько слоевых трансформаторов, процесс создания одного из них ниже, в картинках:

В принципе, имея станочек со счетчиком витков и регулировкой оборотов, процесс намотки не доставляет особых неудобств, если бы не прокладка межслойной изоляции, которая и занимает основное время и нервы. Полученный опыт в частности показал, что хотя многие и рекомендуют использовать в качестве изоляции фторопласт, результаты он показал неоднозначные. Во первых, одного слоя – мало, 100% мало, при разведении контактов до пропадания искры прошьет обязательно, во вторых, у фторопласта нет адгезии с эпоксидной смолой, ну а в третьих, он достаточно мягок и проминается во время намотки за счет натяжения провода, отчего вероятность пробоя увеличивается (моё мнение).

Несколько трансформаторов с изоляцией в один слой довольно быстро пали в результате бесчеловечных опытов. В итоге я бы порекомендовал использовать в качестве межслойной изоляции плёнку для печати на цветных лазерных принтерах, она достаточно жесткая для того, что бы провод ее не проминал, имеет лучшую адгезию с эпоксидкой и трансформаторы с ней жили гораздо дольше. Фотографию используемой мною плёнки можно посмотреть тыкнув сюда: https://humka.ru/images/37.jpg. Толщина плёнки и фторопласта в моих опытах составляла 0.1мм, изоляция в один слой с нахлестом 1-1.5см.

Используя фторопласт я также заметил, что эпоксидка несколько хуже пропитывает витки обмотки несмотря на то, что у меня достаточно неплохая вакуумная камера с мощным насосом, по всей видимости это связано с «мягкостью» фторопласта, который, за счет натяжения провода при намотке, крайне плотно прилегает к предыдущему слою. С плёнкой для принтеров таких проблем не наблюдалось, витки были пропитаны идеально, поэтому, если вы используете фторопласт, не имея вакуумной камеры, мотать по всей видимости следует по технологии novokainium, описанной на сайте выше. Витки должны быть полностью пропитаны эпоксидкой и выглядеть так:

Очень рекомендую приобрести на али изоляционную ленту для трансформаторов, ищется по словам «tape pet transformer», имеет разную ширину. Отлично липнет и вносит неоценимую помощь в создании как слоевого ВВ, так и трансформатора преобразователя. И да, все трансформаторы были убиты преднамеренно, для выяснения «тонких» мест.

В процессе создания слоевых трансформаторов постоянно была мысль попробовать секционный, но мысли о проточке канавок в полипропиленовых трубах никакой радости не доставляли, и в один момент я вспомнил что где-то читал о технологии создания секционника из колечек разного диаметра, не помню где автор брал колечки, но у меня то есть китайский CO2 лазер на 40 ватт и тонкое оргстекло! Быстренько набрасываем чертеж колечек в Corel и пробуем:

Выглядит красиво 🙂 После нарезки колечек я нашел подходящую оправку – маркер, на который они налезали немного внатяг. Итак, набрав каркас, с одного конца маркера, намотал несколько слоев изоленты что бы колечки не слезли, прижал их с другого конца и обмакивая кисточку в дихлорэтан несколько раз прошелся по швам, а т.к. дихлорэтан жидкий как вода, он, по всей видимости смог проникнуть во все стыки, по крайней мере через пару минут я смог снять каркас с маркера и он был достаточно прочен на излом. На всякий случай несколько раз промазал дихлорэтаном и внутри каркаса.

Т.к. толщина оргстекла в районе 1.7мм, мотать секции проводом 0.18, который я использовал для слоевых трансформаторов смысла не было, слишком бы мало их получилось, был взят провод 0.112, которого влезло по 130 витков на 11 секций, итого вышло 1430 витков. Две крайние секции были использованы для вывода проводов.

Сердечник взят проницаемостью 2000 с заводскими канавками, длиной 4 и диаметром 1см., намотано 27 витков провода 0.6 (по изоляции) по всей длине сердечника с отступами ~5мм от краёв.

После намотки всё было готово к заливке эпоксидной смолой под вакуумом, соответственно встал вопрос о форме. Обычно, в качестве формы для заливки я использую обычную офисную бумагу обклеенную скотчем, из нее сворачивается трубочка, которая в свою очередь термопистолетом приклеивается торцом к отрезку такой-же бумаги, эпоксидка не прилипает к скотчу, соответственно заливка из формы достается элементарно. В этот раз мне повезло, неожиданно каркас вошел в 20мг. шприц, хотя и достаточно плотно – но вошел, было решено заливать.

По результатам выяснилось что в какой-то степени это было ошибкой. За счет ничтожного расстояния между каркасом трансформатора и стенками формы-шприца, даже вакуум не помог полностью избавиться от пузырьков. Небольшие пузырьки остались между стенками шприца и каркасом, что впоследствии привело к пробою как раз в местах их образования.

После застывания эпоксидной смолы трансформатор был подключен к схеме, искра на расстоянии ~3.5см. получалась без проблем, больше разводить не стал и решил вынуть заливку из шприца, получилось вот что:

Справа видно нашлёпку сделанную термопистолетом, она потребовалась т.к. из-за пузырька в основании, сразу стало шить с первички на HV выход, нашлепка помогла, шить стало в других местах 🙂 Давайте посмотрим видео:

Как видно по фото и видео, внешняя изоляция толщиной получилась менее миллиметра, а за счет образования пузырьков воздуха, шить стало как раз в этих местах, отсюда следует первый вывод: толщина внешнего слоя изоляции (эпоксидной смолы) должна быть не менее 1мм.

Т.к. эпоксидка достаточно прозрачна и работает как линза, по фото невозможно оценить реальную толщину внешнего слоя, будь там хоть 4 мм, на фото будет выглядеть будто бы обмотка идёт впритык.

На расстоянии ~1см, пробоев нет:

Если до этого все мои опыты были достаточно бессистемны – попускать искорки, посмотреть в каком месте прошьет, то по истечении некоторого времени захотелось увидеть результат в цифрах. Из 10 резисторов по 100ом был собран делитель напряжения на котором и происходили последующие измерения.

Первым делом выяснилось, что трансформатор был сфазирован неверно. Т.е. в роликах наблюдаем работу с неправильной фазировкой. Как это выглядит можно увидеть на картинке ниже:

Т.к. делитель у нас 1:10, а разряжается в нагрузку ~1400 вольт, на щупе осциллографа также был включен делитель 1:10, соответственно результаты измерений умножаем на 10. Цена деления 100us 20v.

На самой первой картинке результат с неправильно подключенным трансформатором: амплитуда всего 536 вольт. После переключения выводов первички достигаем 888 вольт, после переключения начала вторички достигаем 928 вольт.

Немного поясню, если не брать во внимание направление намотки первичной и вторичной обмоток, на выходе мы имеем три проводка, два первички и один вывод начала вторичной обмотки. Соответственно, есть возможность реализовать четыре различных вида подключения. При этом, максимальную амплитуду даст один вид, а высокую вероятность пробоя ВВ трансформатора – два других 🙂

На картинке ниже фазировка, давшая наибольшую амплитуду в импульсе:

Перейдем к экспериментам. Первое что мне было интересно проверить, это влияние количества витков первичной обмотки и типа намотки на выходной импульс, второе – сердечник. В мегашокере фримена он был из трансформаторных пластин, в ЗШ рекомендован феррит от строчника, с предположительной проницаемостью 2000.

Кроме того, если предыдущий трансформатор был намотан проводом 0.112, этот я решил намотать проводом 0.18 т.к. на форумах часто встречается рекомендация мотать вторичку более толстым проводом, чуть ли не 0.35. Т.к. провод довольно толстый, в мой каркас влезло всего ~630 витков, 7 секций по 90 витков проводом 0.18. Мотал я только вторичку, соответственно получился каркас-трубка, в которую вставлялись сердечники с разными параметрами, вот что получилось:

(опять же обращаю внимание на оптическое искажение, в результате которого кажется что секции с обмоткой вплотную прилегают к внешним стенкам, на самом деле это не так, внешний слой эпоксидки примерно 2мм.)

Большого выбора сердечников для тестов к сожалению не было, удалось проверить три варианта: 2000, д=10мм с двумя заводскими канавками, 600, д=10мм круглый, 400, д=8мм, круглый, фото прилагаю:

Все сердечники имеют длину ~40мм в целях минимизации размеров трансформатора, т.к. с учетом изоляции по торцам и выходов обмоток, эти 40мм легко превращаются в 50, что само по себе уже много.

Сердечники с обмоткой, первый еще эпоксидке, остался после разборки предыдущего пробитого трансформатора, 27 витков, второй просто для демонстрации.

Далее идут осциллограммы измерения выходного импульса на вышеописанном делителе, напомню, цена деления 100us, клетка 50v, делитель 1:10. Осциллограммы совмещенные, наложенные друг на друга, за качество фото извиняюсь, снято на телефон, выправлены по возможности в фотошопе. По подписям видно кол-во витков, амплитуду, проницаемость сердечника и тип намотки.

37 витков в первичке

27 витков в первичке

22 витка в в первичке

18 витков в в первичке

Что можно сказать? В довольно большом диапазоне разницы витков, мы наблюдаем практически одинаковую продолжительность боевого импульса при похожей амплитуде, разница от проницаемости сердечника и типа намотки находится на уровне погрешности. При 18 витках наблюдается тенденция к снижению амплитуды. Тем не менее, вместе со снижением количества витков, становится заметен уменьшающийся угол наклона разряда конденсатора. Ниже, для примера, осциллограмма предыдущего трансформатора (11 секций, 27 в первичке, 1430 во вторичке), смотрим:

Видим еще более пологий график разряда, плюс амплитуда меньше на 500 вольт. Соответственно можно сделать вывод, что сопротивление вторичной обмотки влияет на амплитуду. По моим ощущениям, для сохранения ~1400 вольт будет достаточно провода 0.16, к сожалению в наличии пока нет, не могу проверить, но похоже что 0.112 – мало, 0.18 – возможно избыточно. Зависимости начальной скорости разряда боевого конденсатора от числа витков первичной обмотки я пока так и не понял.

Так же стоит заметить что в процессе измерений искровой промежуток я нормировал «на глазок», примерно миллиметров 3-5, что вполне могло вносить незначительные искажения.

Попробовал сердечник с проницаемостью 400 и диаметром 8мм, вот что вышло:

Амплитуда осталась прежней, время импульса уменьшилось, начальная скорость разряда боевого конденсатора стала еще более высокой. Тут еще следует учесть, что 8мм сердечник болтался в оправке с внутренним диаметром ~12мм.

Взял сердечник с проницаемостью 600, 10мм диаметром, по длине каркаса (~4 см), 18 витков, по центру, длина сердечника ~8см результаты:

Амплитуда осталось прежней, по сравнению с предыдущим сердечником время чуть увеличилось, начальная скорость разряда конденсатора всё так же высока.

Узнав про эти эксперименты, товарищ попросил сделать что-либо эдакое для отпугивания агрессивной свиноматки, которая нападает во время кормления. С учетом предыдущего опыта решил что 0.112 провод плюс конденсаторы 0.1uf здесь будут в самый раз. Конденсаторы были заказаны в чипдипе, гори он огнём за свои цены, ну а пока они едут – делаем новый трансформатор с учетом предыдущих ошибок.

Трансформатор делался под заливку в шприце, соответственно я уменьшил диаметр колец-перегородок для лучшего выхода воздуха, увеличил длину секций для намотки и по торцам сделал кольца-штурвальчики (не сплошные) по внутреннему диаметру шприца, чтобы пузырьки могли выйти а каркас был выровнен точно по центру. Что получилось видно на фото, проклятые микропузырьки так и остались, мне уже кажется что дело в эпоксидке, т.к. я использую разную.

Параметры трансформатора, назовём его Т2: первичка 22 витка проводом 0.6 по всей длине стержня с отступом ~6мм по краям, вторичка 1395 витков проводом 0.112 в девяти секциях по 155 витков в каждой. Сердечник НМ400, д=8мм длиной 47мм, N1: 68.4мОм, 17.5мкГн, N2: 145.6Ом, 65.6мГн. Искру в 35мм держит без проблем, хотя и думаю что может больше, но т.к. создавался для дела а не для опытов решил не рисковать, всё-таки производство такого трансформатора занимает довольно много времени. Немного передохнём:

Потыкаем в CD диск:

Посмотрим осциллограмму на делителе:

По сравнению с самым первым задокументированным вариантом, амплитуда немного выросла, скорее всего из-за меньшего сопротивления провода: меньше диаметр намотки, чуть меньше витков, давайте сравним. Напомню:

1. Сердечник 40мм, д=10мм, проницаемость 2000, первичка 27 витков, вторичка 1430, на картинке желтая линия, 928 вольт.
2. (Т2) Сердечник 47мм, д=8мм, проницаемость 400, первичка 22 витка, вторичка 1395, на картинке красная линия, 1000 вольт.

Любопытна довольно заметная разница в объеме сердечника, формула расчета объема цилиндра:

Соответственно получаем значения:

Объем цилиндра с радиусом 5 и высотой 40 равен 3141.5927 ед.3
Объем цилиндра с радиусом 4 и высотой 47 равен 2362.4777 ед.3

Справедливости ради нужно заметить, что сердечник с проницаемостью 2000 и заводскими канавками не совсем цилиндр, больше похож на прямоугольник с сильно скруглёнными углами, реальный его объем немного меньше.

Ну и под конец нашел давным-давно сделанный слоевой трансформатор, вторичка 20 витков 0.6, первичка не помню, должна быть в районе 700-800 витков 0.18, сердечник около 4см длиной НМ2000. Замечу что мотать так не следует, пробивает с HV на первичку, но искру чуть более чем в сантиметр держит, вот фото:

1N: 20 витков, 108.4мОм, 22.19мкГн
2N: 26,2Ом, 35.41мГн

Осциллограмма:

Некоторые промежуточные выводы и размышления.

Прежде всего мне кажется, что не стоит гнаться за большим пробивным расстоянием. Во первых такой импульс не будет эффективным т.к. с увеличением расстояния падают параметры импульса, по крайней мере амплитуда точно. Во вторых, для получения длинного пробивного импульса требуется более высокое напряжение, которое получается за счет большего количества витков во вторичной обмотке, а это в свою очередь даёт уменьшение тока импульса и увеличение сопротивления обмотки.

Т.е. смысл применения контактного шокера через слой одежды толщиной в два сантиметра под каждым разрядником кажется крайне сомнительным, что-то до тела конечно дойдет, но нужного эффекта наверняка не будет. Оптимальным мне кажется уверенный пробой в 3-3.5 см, возможно меньше.

Далее следует неясность с применяемым сердечником, различные их типы и размеры показали довольно незначительное влияние на длительность боевого импульса, с разницей буквально в районе 5-10%.

Диаметр провода вторичной обмотки важен, и судя по опытам влияет на амплитуду выходного импульса, но непонятно что здесь важнее, активное сопротивление провода или индуктивное.

Диаметр провода первичной обмотки во всех экспериментах был 0.6 по изоляции, другого подходящего у меня нет, 0.85 мне кажется избыточен и испытывать его я не стал.

Заметно влияние количества витков в первичной обмотке на начальную скорость разряда боевого конденсатора, со снижением количества витков увеличивается скорость разряда что заметно по более острому углу в начале осциллограммы. При 18 витках заметно падение амплитуды импульса, соответственно можно сделать допущение, что оптимально использовать 20-22 витка при описанных типах сердечника.

Увеличение скорости разряда также заметно на сердечниках меньшего объема, соответственно можно сделать допущение что на тонких сердечниках для сохранения более плавного разряда, витков нужно больше, хотя остается вопрос – нужен ли этот плавный разряд?

В процессе экспериментов не сделаны замеры поджигающего (дающего разряд) импульса т.к. к сожалению я не знаю как измерить импульс ~80kV. В поджигающем импульсе по моим догадкам важен ток, с увеличением которого будет происходить более уверенный пробой материалов между разрядниками. А бы получить ток, нужно снижать количество витков вторичной обмотки, что в свою очередь будет давать уменьшение расстояния уверенного пробоя. Замкнутый круг.

Помимо прочего, создается ощущение что на длительность импульса помимо ёмкости поджигающего конденсатора, влияет еще и ёмкость боевого, т.к. разряжаясь в ионизированный канал он тем самым его поддерживает. А если учесть что первичный преобразователь работает непрерывно, то влияет и его мощность, т.к. во время работы ионизированного канала боевой конденсатор постоянно подзаряжается. Соответственно, по моему предположению, если бы во время пробоя разрядника удалось отключать от преобразователя поджигающий конденсатор и его мощность шла только на боевой, время существования ионизированного канала могло бы увеличиться.

Это также можно проверить поменяв раза в два ёмкость боевого, для сравнения результатов, попробую как приедут.

Еще один важный момент: в качестве предохранительного разрядника (на электроде) нельзя использовать штатный EPCOS на 1400 вольт, т.к. с ним при контакте электродов напрямую на тело (в моём случае на делитель) возникает дуга. Соответственно, если захочется потыкать в голое тело, да и просто для предохранения схемы, разрядник следует колхозить из двух электродов с расстоянием миллиметра три.

Искровой пробой по воздуху.

На одном зарубежном форуме нашел некоторую информацию по расстоянию искрового пробоя воздуха в зависимости от напряжения и формы электродов, первую картинку участник форума создал на основании данных калькулятора High Voltage Arc Gap Calculator

Т.к. калькулятор позволяет рассчитывать расстояние пробой лишь до 3 киловольт, вторая картинка представляет собой экстраполяцию предыдущей, давайте посмотрим:

Следующая картинка взята у создателя схем Stun Gun-1, Stun Gun-2, Stun Gun-3 также с зарубежного сайта:

Еще информация:

Вторую часть экспериментов планирую провести по факту получения заказанных деталек и сбора необходимой информации, также надеюсь что приведенная информация будет полезна сообществу, успехов!

Please enable JavaScript to view the comments powered by Disqus.

Схема электрошокера.Как сделать электрошокер своими руками

Подробности
Категория: Высоковольтные устройства
Опубликовано 22.10.2015 16:57
Автор: Admin
Просмотров: 6698

Существует несколько способов обезопасить себя и своих близких от внезапного нападения на улице, например, используя пневматическое и боевое оружие. Так как разрешение на эти средства защиты получить непросто, в качестве доступного варианта можно использовать электрошокер. Хотя в ассортиментах магазинов представлены электрошокеры на любой вкус, такое несложное устройство можно собрать самостоятельно.

На прилавках магазинов, в основном представлены устройства с суммарной мощностью до 3 Вт, в домашних же условиях можно изготовить пятиваттный самодельный электрошокер. В качестве корпуса допускается использовать любую подходящую и удобную емкость, например, корпус фонарика. Схема электрошокера представлена на рисунке ниже.

Простая схема электрошокера 

Простая схема электрошокера

Основные элементы электрошокера – это инвертор, источник питания, трансформатор, высоковольтная катушка и конденсаторы, а также разрядник. Схема модуля инвертора собрана на единственном полевом транзисторе, где сопротивление затворного резистора допускается варьировать в диапазоне от 40 до 820 Ом. Самодельный электрошокер питается от связки батареек из никель-кадмия емкостью 350 мА/ч. Заявленного напряжения в 480 В вполне достаточно для эффективности работы устройства. В качестве катушки подойдет трансформатор общей мощностью до 50 Вт.

После демонтажа исходных обмоток трансформатора, аккуратно монтируются первичная и вторичная обмотки. Первая обмотка состоит из 2*4 витков диаметром 0,6-0,8 мм, повышающая из 650 витков, причем в каждом слое содержится 70 витков. Слои первой и второй обмоток требуется изолировать скотчем.

При изготовлении основного элемента электрошокера, высоковольтной передающей катушки, применяют ферритовый стержень. До начала намотки стержень необходимо качественно заизолировать. Первая обмотка состоит из 14 витков диаметром 0,6-0,8 мм, повышающая из 500 витков, в каждом слое наматывается по 70 витков. Толщина провода повышающей обмотки 0,1 мм. Все слои высоковольтной катушки тщательно изолируются. После окончания намотки, трансформатор размещается в подходящую емкость, например, шприц, и обрабатывается эпоксидкой смолой.

Катушка электрошокера

В самодельный электрошокер устанавливаются два конденсатора по 0.1-0,22 мкФ. Схема сборки конденсаторов – последовательная, допустимое напряжение каждого из них не менее 1000 Вольт.

В качестве искрового разрядника допускается использование кусков провода. Диаметра провода в 0,8 мм при расстоянии между концами в 1 мм вполне достаточно для надежной работы устройства. Если же, по каким-то причинам, самодельный разрядник изготовить не получается, то можно воспользоваться заводским, пробиваемым напряжением в 700-900 Вольт.

В качестве выпрямительного диода используется КЦ106 или три импульсных диода с общим напряжением не менее 3000 Вольт. Схема соединения диодов – последовательная.
Не имея большого опыта в электротехнике, практически каждый любитель может собрать электрошокер для защиты себя и своих близких.

  • < Назад
  • Вперёд >
Добавить комментарий

Простейший шокер — 21 Февраля 2012


 
В этой статье продолжаем изучать конструкции электрошокеров. Мы с вами уже успели рассмотреть несколько разнообразныx устройств электрошока разной мощности. 
Пришло время испытать еще один вид такого устройство — электрошок с двойной степенью умножения. 

 

 

 

Надеюсь вы прекрасно знаете работу умножительного электрошокера, где напряжение от преобразователя постепенно через высоковольтные диоды заряжает конденсаторы высокого напряжения. Как правило, конденсаторы такого шокера имеют небольшую емкость, только в редчайшиx случаяx ставят емкости в 0,1 микрофарад! Схема устройства: В общем сегодня рассмотрим боевой электрошок для самостоятельного изготовления, где стоят конденсаторы большой емкости. Не смотря на малые размеры, данный шокер имеет очень большую мощность. Подробнее о конструкции самого электрошока. Как видно из сxемы, шокер собран на простом блокинг — генераторе и имеет всего один транзистор. Резистор с сопротивлением 36 ом не критичен и можно поднять номинал до 100 ом — это уменьшит потребление тока электрошокера, но данный резистор нужно поставить как можно помощнее, поскольку он будет сильно греться. 

 

 

 Транзистор типа КТ819 или КТ805. Диод 1N4007 или FR007. Трансформатор намотан на сердечнике от радиоприемника и первичная обмотка имеет 34 витков с отводом от середины, мотают ее проводом 0,6 мм. Вторичная обмотка намотана проводом с диаметром 0,08 — 0,1 мм и содержит 600 витков, при намотке вторичной обмотки нужно через каждые 100 витков ставить изоляцию конденсаторной бумагой или скотчем. Диоды в умножителе нужно ставить типа КЦ106. Конденсаторы имеют емкость 0,47 микрофарад и максимальное напряжение 630 вольт.

 

 

 

 Источником питания электрошокового устройства служит один литий — ионный аккумулятор от мобильного телефона с емкостью более 600 ма. Данный электрошокер не вырабатывает большие дуги и способен только пробить летнюю майку, но зато данный шокер был испытан на настоящем xулигане и после одной секунды воздействия он упал и начал xрипеть! Резистор 5 мегаом разряжает боевые конденсаторы умножителя после выключения электрошокера.

 

  

 

Штыками служат обыкновенная вилка, которую достал от зарядного устройства мобильного телефона. Корпус — пробка из-под дуxов. Готовая конструкция обмотана черной изолентой. На этом наш электрошок готов и не забывайте, что электрошокер — это оружие которое должно быть использовано только в целяx обороны. Автор статьи — АКА.

Обсудить на Форуме

Электрошокер своими руками — 4 Февраля 2013

Все началось с того, что мне на день рождения двоюродная сестра, живущая в Москве, прислала шокер. Я радовался этому подарку примерно 3 месяца,после чего подарок «закончился»… Шокер просто вышел из строя. После этого, я уехал за границу на 2 месяца, приехал в конце августа, и захотелось починить свою «игрушку». Почти три месяца я изучал схемы аналогичных устройств, экспериментировал. И вот наконец я собрал свой шокер. 

Корпус, выключатель, кнопку и штыки я оставил, а всю начинку поменял, даже аккумуляторы заменил на новые. И так, передём к схеме. 

Источник питания — два последовательно соединённых li-ion аккумулятора, по 3.7v 1000mAh каждый.

 

Преобразователь напряжения выбран по схеме блокинг-генератор на транзисторе IRF3205 (автор схемы — АКА). Импульсный трансформатор взял из схемы управления (балласта) ЛДС на 18 Вт. Сердечник Ш-образный, без зазора. 

Первичная обмотка состоит из 10 витков, провод-0.63мм. Обмотка имеет отвод от середины.

 

 Вторичная обмотка содержит 1500 витков, провод-0.05мм. Изоляции ставим через каждые 100 витков (3 слоя прозрачного скотча). В высоковольтной части использован трёхступенчатый умножитель напряжения.

 

Конденсаторы — 2 штуки на 5КВ 2200пф, а характеристики третьего конденсатора я даже не знаю, достал его из заморского умножителя. ВВ диоды желательно использовать КЦ106Г, а я использовал два диода КЦ106В, в качестве второго диода использованны 2 последовательно соединённых КЦ103А.

 

В итоге всё это было смонтировано в корпус. Затем последняя стадия-заливка. 

 

Заливка делалась возком (обычная свечка). Аккумуляторы li-ion опасная вещь и пользоваться ими нужно очень аккуратно! Для их зарядки я нашёл транс советский на 12 вольт и перемотал вторичку. В итоге на выходе оказалось 4.8 вольта, после выпрямления получилось 5.3 вольта.

  

Заряжаю я их не напрямую, а через лампочку от гирлянды (так надёжнее).

 

 Заряжать нужно по очереди, а не сразу оба. Если есть навыки в электронике, то можно собрать универсальную зарядку для литиевых аккумуляторов. 

 

Можно было бы не париться и купить никель-металл-гидридных аккумуляторов, но li-ion держаться дольше, у них саморазряд мизерный, к тому же аккумуляторы достались на халяву.

P.S. в итоге я добавил ещё и фонарь, но то, как я его делал не запечатлел на фото. Фонарь состоит из семи белых (сверхярких) светодиодов, соеденённых параллельно и подключены они через резистор 15 ом и кнопку к аккумулятору.



Контактная информация автора:

E-mail [email protected]

Ник на форуме сайта- sanya     Полный фото архив ТУТ

Обсудить на Форуме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *