Усилитель d класса своими руками – «холод» ламп без трансформатора, DIY-компиляции, десятилетия мучений с классом «Д» / Pult.ru corporate blog / Habr

  • Home
  • Своими руками
  • Усилитель d класса своими руками – «холод» ламп без трансформатора, DIY-компиляции, десятилетия мучений с классом «Д» / Pult.ru corporate blog / Habr

Содержание

Достойный встраиваемый цифровой усилитель НЧ своими руками за разумные деньги

Добрый день, Хабр!

Наша прошлая статья о DIY-аудиотехнике вызвала довольно большой резонанс и сегодня мы хотели бы рассказать о другой нашей разработке из области аудио — высококачественном УНЧ. Устройство было создано Олегом Тетушкиным для собственных нужд. Но в результате усилитель прижился в офисе. Собран, разумеется, из того, что плохо лежало было под рукой на складе. В данном случае он собран в самодельном корпусе. Но по сути, его можно встроить куда угодно — хоть в мебель. На что хватит фантазии.

В комментах к вышеупомянутой статье разгорелся спор о том, что можно и что нельзя называть HiFi или даже просто качественным. Поэтому хочется пояснить — определение «качественный» основывается исключительно на нашем чувстве прекрасного. Мы считаем, что звук данного усилителя вполне достойный и удовлетворит любого среднего человека. Хотя у аудиофилов может быть другое мнение по этому поводу.


Вот такой красавец должен получиться в результате

Что было использовано:

  • MP5613 — Цифровой усилитель D-класса мощностью 2 x 150 Вт. Технология PurePath HD.
  • MP5630I2 — Индикатор для мощного усилителя НЧ (стерео).
  • MP1054 – Светодинамический стрелочный индикатор уровня сигнала.
  • MP1231 — Аудиорегулятор 2 канала.
  • ESE150-24 – Блок питания. 150 Вт. 24 В.
  • SL-01H — Теплоотвод с вентилятором.
  • WP4-18FB — Kлеммник нажимной 4 контакта
  • Светодиоды 5мм – 7 шт.

Как это работает?

Для MP5613 был использован блок питания в 24В, следовательно, в нагрузку 4 ОМа будет отдаваться около 70 Ватт на канал. Результат — получаем 2*70 Ватт качественного звука PurePath.

На входе усилителя устанавливаются MP1231 (сборка на AD8402), для работы регулятором громкости и баланса стереоканалов, плюс MP5630I2, который используется в роли предварительного усилителя. После этого этапа стереосигнал идет на вход MP5613, и уже потом — на акустические системы. Что касается сигнала для светодинамического стрелочного индикатора, то его снимаем с выхода усилителя мощности, прямо с акустических систем.

Как это сделать?


Регулировка громкости на МР1231. Основная схема

Начинаем процесс с входного каскада MP1231 + MP5630I2.

Вначале потенциометр МР1231 подключаем сразу перед МР563012 (это показано на схеме. Чтобы добиться задуманного, на обратной стороне платы МР563012, сразу после RCA-разъема (рис.1 и 1.2) нужно перерезать сигнальные проводники на печатной платы, с зачисткой обоих проводников с двух сторон. Разрез делается для того, чтобы здесь можно было установить потенциометр. Важная деталь: обязательно нужно использовать экранированный провод для соединения потенциометра и предварительного усилителя. Подключать все элементы (наверное, об этом на Хабре можно не говорить) нужно в полном соответствии как с цветом, так и с маркировкой.

А питание на МР1231 подводится с МР563012. На рисунке 2 это показано:


Рис.1


Рис.1.2


Рис. 2

Комментарий: Для того, чтобы улучшить помехозащищенность системы (MP1231 всем хорош, кроме помехозащиненности), нужно немного доработать схему. Для решения проблемы необходимо выполнить четыре простых шага (показано на рис. 3):

  • Непосредственно к клеммам питания MP1231 вместе с подводящими проводниками зажать электролит на 1000 мкФ или больше.
  • Электролит на 470 мкФ подпаять параллельно конденсатору С4.
  • Корпус валкодера у MP1231 соединить с GND. Зачистить маску рядом с ножкой корпуса и пропаять.
  • Соединить GND MP1231 и GND драйвера усилителя толстым проводом можно даже оплеткой. Это нужно сделать потому что источник 12В установлен на драйвере. Как это лучше всего сделать показано на рис.4.

Корпус и вывод индикаторов на переднюю панель

Перед тем, как приступить к сборке корпуса, необходимо немного доработать усилитель МР5613 и индикатор МР563012. Доработка заключается в подпайке выводных каналов к платам, на проводах с длиной 10-12 сантиметров. Что касается плат конфигуратора, то здесь установлены СМД-светодиоды, 6 штук, которые индицируют состояние усилителя: температурные режимы (2), ошибка, готовность, перегрузка и сброс. После доработки все это можно вставить на переднюю панель устройства:

Кроме того, на обратной стороне платы конфигуратора нужно подпаять провод длиной 15-20 сантиметров. Провод подпаивается к одному из выходов (можно использовать любой) каждого канала, через пленочные конденсаторы 0.1 мкФ. Таким образом организовывается снятие сигнала на индикатор уровня.

Теперь приступаем к созданию корпуса

Его мы вырезали и склеили из листов вспененного ПВХ. Этот материал нам понравился тем, что его очень легко обработать, плюс можно клеить любым клеем для пластика. Такой материал легко красится. Здесь можно скачать фалы передней и фальш-панели (формат .lay).

Размеры деталей:

  • боковых стенок – 110 * 200
  • дна и крышки – 210 * 200
  • задней стенки – 210 * 100

Корпус мы решили покрасить краской из обычного баллончика. Переднюю панель покрасили под металл, а сам корпус — темно-зеленой (почти черной) краской. На корпусе крепим модули индикатора и регулятора, винтами М3.

Под зажимы акустики вырезаем отверстие под выключатель, плюс сверлим отверстия под зажиммы акустики.

Блок питания, что логично, ставим на длинную сторону.

Усилитель крепится на дно через стойки 5 мм. Переднюю панель закрепляем с помощью саморезов для дерева.

Комментарий. Для того, чтобы полностью исключить помехи от ШИМ модуляции выполняем следующие шаги:

  • Соединяем последовательно GND всех задействованных модулей либо толстым проводом, либо оплеткой;
  • Около разъемов питания каждого модуля прикрепляем электролиты по 1000 мкФ или больше.

Теперь можно подключать мощные колонки и радоваться качественному звуку.

Если есть желание, можно модернизировать дизайн конструкции. Вот видео с демонстрацией работы всего, что получилось:

Усилитель мы сделали довольно давно, и он до сих пор служит нам верой-правдой. Возможно, вы сможете посоветовать, как сделать конструкцию лучше? Усилитель получился отличный, но нет пределу совершенства, это уже давно известно.

Если кому-то захочется повторить наш путь и за выходные обзавестись очень приличным усилителем, вот здесь есть вся его электронная начинка. Что касается корпуса, то это — дело вкуса и наличия подсобного материала.

Ваш Мастер Кит

Собираем мощный моноблок D-класса

Сообщение от DimoN 91

А предохранителя нет в блоке питания усилителя или я не увидел?

Он есть, реализован ввиде короткого участка из медной проволоки диаметром 0,91мм(примерно 70А), которая впаяна в разрыве плюсового питающего провода. Съёмные не стал городить, заняли бы место, да и лишний контакт ни к чему.

———- Сообщение добавлено 02.12.2015 в 13:01 ———-

Преобразователь напряжения.
Самым важным элементом усилителя является преобразователь напряжения, от него в большей степени зависит выходная мощность. Из 12-14 вольт бортовой сети больше 24 Вт на 4 ома получить нельзя, выше головы не перепрыгнешь. Для бо’льших мощностей в усилителях делают преобразователь напряжения, в основном двухполярный. В моем случае, чтобы получить 800вт, нужно на нагрузку 4ом подать 56в действующего напряжения. Чтобы усилитель мог выдать такое напряжение, нам необходим двухполярный блок питания +-80в(56*1,41=80), но это без учета потерь на транзисторах, и КПД. В реальности же под нагрузкой напряжение проседает, и нужен запас.

Плата.
Выбрана самая грамотная печатная плата «Старичка», которую я встречал в интернете, отличается она от заводских тем, что силовые дорожки 12 в небольшой длины и имеют максимальную толщину. Также удачно расположены транзисторы и выпрямительные диоды, укорочены ножки, конденсаторы расположены максимально близко к ключам и зашунтированы керамикой.

Трансформатор.
Для трансформатора выбрано кольцо 56*30*20 марки PC40. Его габаритная мощность больше киловатта — с запасом. Мощность преобразователя будет зависеть и от намотки, т.е. насколько тесно связаны будут первичная и вторичная обмотки. Обмотки нужно мотать лакированным проводом в несколько жил как можно плотнее друг к другу, чтобы магнитная связь была сильнее. Сечение жил будет зависеть от тока и частоты преобразования ПН(преобразователь напряжения), так как на высоких частотах действует «скин эффект» — сопротивление толстого провода увеличивается с повышением частоты, поэтому лучше брать несколько жил меньшего сечения, да и мотать будет легче.

Расчёт.
Нужно скачать программу Старичка Exellent http://forum.cxem.net/?showtopic=70885. Я использую упрощенный расчёт трансформатора, в программе узнаю лишь габаритную мощность трансформатора и количество витков первичной обмотки. Но нужно помнить, что на кольце меньше 3х витков намотать не получится. Моё кольцо большое, минимальное число витков первички будет 3, частоту ПН зададим 37кГц.

1. Мощность 800Вт, находим ток в первичке:800вт/12в=66А, но у нас две первички, ток будет распределяются поровну:66/2=33А.
2. Сечение первички будет 33А/6А/мм²=5,5мм²(допустимый ток для медных проводов в трансфооматорах 5-6А/мм2).
Нашёл провод диаметром 0.8мм(по меди), его сечение 0,8*0,8*3,14/4=0,5мм². Нужно будет 11 жил чтобы набрать нужные 5,5мм².
3. Ток вторички будет 800вт/57в(при нагрузке 4ом)=14А.
Первички тоже две, ток будет распределен по 7 А. Минимальное сечение будет 7А/6Амм²=1,16мм². Я с запасом взял три жилы по 0,8 мм, что составит 1,5мм².
4. Теперь осталось узнать количество витков вторичной обмотки. Формула простая: нужно бортовое напряжение сети разделить на число витков первичной обмотки. 12в/3витка=4 витка*вольт.
Теперь зная эту величину, нужно необходимое напряжение вторички разделить 4. 80/4=20витков.
При напряжении 14,4 будет 14,4/3=4,8вольт/виток
Напряжение на вторичке при 20витках составит 20*4,8=96в -для 100вольтовых конденсаторов это нормально.

Намотка.
Самое сложное дело. Тут главное не торопиться, подготовить колечко, обмотав его неплавящимся изолирующим материалом, я применил обычный лейкопластырь. Подготавливаем провода, длину можно узнать намотав одной жилой 3 витка + небольшой запас. Режем одинаковые 11 проводов, с одной стороны счищаем лак, скручиваем плотно нитками в пучек и залуживаем, на трансформаторе это будет делать намного сложнее. Теперь фиксируем теми же нитками начало первичной обмотки, плотно приматываем залуженный конец пучка к колечку и начинаем аккуратно по 1-2 проводу намотку, это легче, чем мотать сразу все 11 жил. Намотав все жилы, конец первички также зачищаем, фиксируем нитками и залуживаем(запаиваем). Аналогично мотается вторая первичка.

Перед намоткой первички нужен слой изоляции. Вторичка мотается аналогично, но легче, главное не допускать перекосов жил, мотать нужно плотно.
Перед впаиванием на плату трансформатора желательно проверить правильность намотки. Для этого нужно замерить индуктивность обмоток, они должны быть одинаковыми. Также при соединении обмоток индуктивность должна значительно возрастать. При неправилной намотке или коротком зымыкании индуктивность будет разной.

Сборка.
Намного удобнее сначала намотать трансформатор, а потом уже под него рисовать печатку. Силовые дорожки для надёжности усилил медным проводом 2,5мм². Ножки транзисторов и диодов максимально укоротил. Подача питания на плату осуществляется с двух сторон медным проводом 6мм². В качестве предохранителя в разрыв питающего провода +12в впаяна медная жила диаметром 0,91 мм, что соответствует плавкой вставке 70А. Ввжно!!! Нужно поставить шунтирующие резисторы на выходе преобразователя, так как без них на холостом ходу происходит накачка напряжения, и оно может превысить 100 вольт, что опасно для выходных конденсаторов. Достаточно поставить по одноватному резистору в плечо, номинал будет зависеть от напряжения питания 90²в/1вт=8100ом берем 10кОм.

Выходные дроссели также рассчитываются в программе, мотаются тем же проводом что и вторичка на трансформаторе, применил жёлтые кольца от блока питания компьютера.

Продолжение следует. Текст будет исправляться….

«холод» ламп без трансформатора, DIY-компиляции, десятилетия мучений с классом «Д» / Pult.ru corporate blog / Habr

Как я и обещал, мы продолжим цикл о легендарных усилителях прошлого и настоящего. На этот раз мы опишем непростую судьбу УМЗЧ класса D, оригинальные разработки в области ламповой схемотехники, не обойдём стороной и DIY-наборы для тех чьи руки выросли из туловища.
При создании материала я постарался отжать всё информационно ценное из шедевров аудиофильской журналистики, сухих технических описаний и публикаций таких товарищей, как Нил Гадер, Гарри Пирсон, Роберт Грин. Как и в предыдущем материале, я старался отыскать основные характеристики и принципиальные схемы этих устройств, а также цены (на момент производства), о которых нередко умалчивают современные авторы.

Futterman h4 OTL – нужно просто выбросить выходной трансформатор


Начнём по традиции с самой «тёплой» в ламповом отношении эпохи, с 50-х в США, где в губернском городе Нью-Йорке, изобретатель Юлиус Футтерман (Julius Futterman) разработал один из наиболее оригинальных ламповых усилителей своего времени. В 1954-м на свет появился ламповый УМЗЧ Futterman h4 OTL, особенностью которого стало отсутствие выходного трансформатора.
В оригинальной схемотехнике усилителя Футтермана катодный резистор фазоинвертора соединялся не с землей, а с выходом усилителя. 100%-ная ООС катодного повторителя Futterman h4 OTL компенсировалась 100%-ной ПОС через катодный резистор фазоинвертора. Интересно, что уникальную для того времени (и высоко оцененную потомками) схему разработал не профессиональный инженер, а радиолюбитель-самоучка.
Причиной необходимости в оригинальном решении было то, что около 30-35 % себестоимости ламповых усилителей тех лет приходилась на выходной трансформатор. Что было крайне существенным фактором, учитывая, что первые усилители производились вручную.
Благодаря конструкторскому решению цена усилителя стала немногим выше стоимости наборов для самостоятельной сборки и составила около $ 180 – 200, что сегодня с учетом инфляции является эквивалентом $ 1600 — 1800. Помимо существенного удешевления продукта инновация избавила УМЗЧ от (так любимой некоторыми аудиофилами и гитаристами) характерной «тёплой» окраски звука.
Следует отметить, что сравнительно небольшая стоимость усилителя соседствовала с почти уникальными для того времени характеристиками.

Судите сами:

  • Диапазон воспроизводимых частот: 7 Гц (!) до 55 кГц
  • RMS: 90 Вт
  • IMD: 0,1 % (1 Вт, 1 Ом)
  • Коэффициент гармоник: 0,1%
  • Выходное сопротивление: 0,6 Ом

Интересно, что идеальной акустической системой для работы с этим усилителем считались электростатические колонки Quad ESL 57, созданные в 1957 году.

Футтерман запатентовал устройство, а лицензии продал нескольким американским компаниям в 1961-м году. Лицензионные усилители по схеме Футермана производились до начала 70-х годов и стоили значительно дороже оригинала. На протяжении 60-х и 70-х изобретатель совершенствовал схемотехнику ламповых усилителей.

В 1984 году, уже после смерти Футермана, компанией New York Audio Labs был выпущен, разработанный при его участии, один из самых дорогих усилителей своего времени (для электростатических акустических систем), стоявший $12 000 (около $26 000 сегодня с учетом инфляции). Среди сравнительно свежих разработок, использующих наследие Футтермана, можно выделить оригинальное устройство итальянца Андреа Циуффоли (схема приведена ниже).


Heathkit amps — DIY для меломана и музыканта


Heathkit — одни из передовиков ламповых конструкторов для любителей канифольной дымки. Компания, основанная в 40-е, приобрела популярность в 60-е, на волне интереса к самостоятельной сборке устройств. Фактически все продукты компании стали культовыми в среде людей увлеченных DIY. В отличие от Dynaco, Heathkit создавали многоцелевые конструкторы, с различными наборами шасси и радиодеталей.
Комплекты и модели менялись достаточно часто, что также существенно рознит эти устройства с «макинтошем для бедных». Пик популярности наборов Heathkit приходится на середину 60-х, когда приобретение качественного усилителя предполагало затраты сравнимые со стоимостью среднего автомобиля.
Все деревянные детали (набор ручек, шасси и т.п.) входили в базовую комплектацию. Гитарные варианты heathkit иногда предполагали включение дополнительных бонусов: излучателей и деталей корпуса для создания комбо. Интересно, что для создания гитарных наборов компания активно применяла транзисторные схемы. Такой подход был не слишком популярен в 60-х (теплый ламповый тренд в гитарном усилении был силён), но позволял приобрести дешевое гитарное оборудование небогатым начинающим музыкантам.
В зависимости от назначения устройства, пользователь волен был выбрать тот или иной комплект. Например, были наборы для гитарного усиления, воспроизведения музыки, в том или ином наборе разнилась мощность УМЗЧ. Характеристики устройства приводить смысла не имеет, так как они разнятся в зависимости от конкретной модели, при этом подавляющее большинство авторов сходятся на том, что эти усилители вполне соответствовали HI-fi классу, а гитарные комбо Heathkit составляли конкуренцию аналогичным моделям Fender и VOX того периода.

Класс D: КПД vs искажения


Легендарными в среде инженеров считаются усилители класса D, попытки создать которые начались ещё в 50-х. Сама идея УМЗЧ с импульсным управлением, выходными лампами приписывается 2-м авторам, нашему соотечественнику Дмитрию Васильевичу Агееву (1951 год) и Алеку Ривзу из Соединенного Королевства (1951 год). Однако, говорить о том, что инновационные концепции смелых инженеров мгновенно стали широко востребованными на рынке не приходится.
Д.В. Агеев

Внезапно начавшаяся эра транзисторов для попыток создания годного УМЗЧ class D не привела к ожидаемым результатам. «Принцип неисчерпаемых возможностей КПД», заложенный советским инженером Агеевым и его британским коллегой, долгое время оказывался неприступным даже для специалистов таких компаний как SONY, PHILIPS, Marantz, Matsusita Electric. Вплоть до 80-х ничего прилично звучащего и коммерчески успешного в классе D создать не удавалось. Ситуация поменялась к середине 80-х, когда на рынке радиодеталей появились МДП-транзисторы.

Известно, что в режиме D импульс приобретает почти прямоугольную форму, так как транзистор либо заперт, либо открыт. А сопротивление открытого канала современных силовых МПД-транзисторов совсем небольшое (от единиц до десятков миллиОм). Благодаря этому, построенный на основании этих элементов усилитель класса D способен работать практически без потерь мощности. КПД таких усилителей класса D составляет около 90 — 95 %.


Не смотря на ограниченную популярность, усилители D-класса того времени тоже нельзя назвать сверхмассовым продуктом. Для потребителя концепция класса D успела утратить привлекательность к концу 80-х, главным образом в связи с неудачами их несовершенных предшественников.

Как повествует Википедия, основными проблемами усилителей класса D были и, в какой-то степени, остаются:

…но не позволяет добиться высокого качества воспроизведения звука, даже если охватить её обратной связью. Нелинейные искажения класса D имеют несколько причин: нелинейность генератора сигнала треугольной формы, нелинейность катушек индуктивности выходного фильтра, нелинейность из-за мёртвого времени между включениями верхнего и нижнего плеча усилителя…

Пожалуй, самым заметным представителем класса D стал один из первых цифровых усилителей, дотягивающих до показателей HI-FI — Tripath TA2020, серийное производство которого было запущено в 1999 году. Дело в том, что, в связи с неизбежной необходимостью в устранении искажений, принцип аналоговой модуляции оказался малопривлекательным.
В ранних проектах усилителей класса D низкочастотные помехи свободно проходили с питающих шин на выход, что вынуждало использовать нелинейную модуляцию и дельта-сигма модуляцию для их устранения. Последнее приводило к неизбежному росту частоты переключения и снижению КПД. Логичным выходом стало применение цифровых схем, уменьшавших частоту переключения.

Некоторые инженеры ставят под сомнение заявленные характеристики Tripath TA2020 и их соответствие стандартам HI-FI. Предлагаю читателям самим оценить показатели качества на примере 20-ти ваттного усилителя для авто, созданного на базе TA2020:
  • RMS: 2 х 20 Вт 4ohm, 2×12 Вт 8ohm
  • Соотношение сигнал-шум (SNR): 98дб
  • Динамический диапазон: 98дб
  • IMD: 0.1% 1 Вт, 4ohm
  • THD: 0.03% 9 Вт, 4ohm, 0.1% — 10 Вт ом, 0.1% — 6 Вт 8ohm, 10% — 23 Вт ом, 10% 13 — Вт 8ohm
  • Энергоэффективность: 81% 20 Вт, ом, 88% 12 Вт, 8ohm
  • Чувствительность входа: 200mV

И всё это счастье при цене от $20 до 60.

Микросхема, на основе которой создан усилитель, была внесена в список «25 микросхем, которые потрясли мир» по версии журнала IEEE Spectrum.


Компания Tripath, выпустившая инновационный усилитель, с целью привлечения внимания к продукту придумала даже новый класс, объявив свое устройство усилителем класса T (хотя принцип работы девайса соответствовал классу D).
Несмотря на маркетинговые усилия,«креативы» с классификацией, Tripath не выдержали конкуренции с более мощными игроками и исчезли с рынка в 2007-м году. Бесславный и тихий конец этой компании никак не умаляет заслуг разработчиков, которые создали, вероятно, единственный действительно легендарный усилитель класса D.

To be continued


Собственно, на этом пока всё, искренне надеюсь, что вам понравилось. В этом цикле планируем ещё 2 материала. Анонсирую моголамповых хайэнд монстров, современные гибридные разработки, и, возможно, сказку об идеальном усилителе.

Усилитель D-класса. Усилитель звука для авто :: SYL.ru

Технология усиления звуковых сигналов развивается уже в течение 15-20 лет. Она имеет вполне определенные преимущества перед той, что реализована в широко распространенных аудиоусилителях классов A или AB. Мы имеем в виду усилитель D-класса. Его преимущество обусловлено прежде всего высоким КПД.

Классы автомобильных усилителей

Усилитель звука для авто, работающий в классе А, состоит из транзисторных каскадов, которые включены (проводят ток) как в течение всего времени действия входного аудиосигнала, так и при его отсутствии. У него низкий уровень искажений усиленного выходного звукового сигнала, поскольку его транзисторы работают на линейных участках своих характеристик и полностью транслируют входные сигналы на выход схемы, но он при этом имеет весьма низкий КПД. Эти устройства обычно предназначены для высококачественных аудиоприложений, для которых вопросы потерь мощности не являются определяющими. Транзисторы усилителей класса B проводят только либо отрицательные, либо положительные полуволны входного сигнала. Причем наличие зон нечувствительности вблизи нулевой отметки приводит к высокому уровню искажений. Однако этот эффект обеспечивает гораздо лучшие характеристики, чем в устройствах типа A. Усилитель класса AB комбинирует особенности обеих предыдущих с целью получения лучшего КПД, чем в классе A, но меньших искажений, чем в типе B. Хотя эти устройства хорошо подходят для маломощных приборов, или в лучшем случае средней мощности, тенденцией последних лет становится выпуск все более мощных усилителей. Когда-то 30 Вт считалось вполне достаточно, чтобы удовлетворить большинство потребителей. Теперь же этого вряд ли хватит, чтобы создать качественный стереоусилитель звука для авто. В результате были созданы новые их классы, включая и класс D, чтобы справиться с этой высокой мощностью потребления.

В чем преимущества устройств D-класса

Архитектура их полностью отличается от усилителей других вышеперечисленных классов и аналогична схемам импульсных источников питания (ИБП). Усилитель D-класса также основан на использовании высокочастотной широтно-импульсной модуляции (ШИМ, или англ. PWM) для создания выходного сигнала. Его транзисторы либо полностью включены (падение напряжения на них очень мало), либо полностью выключены (ток через них близок к нулю). В обоих случаях мощность электропотерь (произведение тока на падение напряжение) очень мала, и они, как правило, теряют гораздо меньше энергии в виде тепла. Таким образом, эта архитектура хорошо реализуется на основе очень малогабаритных и экономичных МОП-транзисторов. Усилитель D-класса может достигать очень высокого уровня энергоэффективности, что приводит к значительной экономии энергии источника питания. Однако преобразование входного аудиосигнала в ШИМ-сигнал, сопровождающееся его квантованием, само может вызвать больше искажений на выходе, чем в усилителе другой архитектуры. Целью создания устройств этого класса было уменьшение искажений на низких уровнях при сохранении высокой энергоэффективности.

Сравнение КПД усилителей различных классов

На рисунке ниже показана типовая зависимость КПД от выходной мощности для устройств классов D и AB.

классы автомобильных усилителейТеоретическая максимальный КПД в D-классе достигает 100 %, и свыше 90 % достижимо на практике. Обратите внимание, что он достигает значений в 90 % уже при умеренной выходной мощности, тогда как максимум КПД в классе AB в 78 % получается только при полной мощности. В практическом же усилении музыкальных сигналов реализуется КПД менее чем 50 %. Усилитель звука класса D при высоком КПД потребляет меньше энергии для заданной выходной мощности, но еще более важно, что резко уменьшаются требования к теплоотводу. Тот, кто построил или видел мощный аудиоусилитель, наверняка знает, что для поддержания относительно невысокой температуры электроники необходимы большие алюминиевые радиаторы.

Нагрузка на силовой трансформатор уменьшается также на значительную величину, позволяя использовать меньший его габарит для той же выходной мощности. Можно ли собрать усилитель класса D своими руками?

На рисунке ниже показано такое устройство на 400 Вт.

усилитель класса d своими рукамиКвалифицированный радиолюбитель не увидит в этой конструкции ничего такого, что заставило бы его отказаться от ее собственноручной реализации.

Область преимущественного использования

Если углубиться в детали этой технологии, можно заметить, что хороший (низкий уровень искажений, полный диапазон) усилитель мощности D-класса должен работать на довольно высоких частотах, в диапазоне от 100 кГц до 1 МГц, при использовании высокоскоростных сигнальных устройств и соответствующих источников питания. Поначалу это обусловило использование этого класса там, где не требуется полная пропускная способность и допустим более высокий уровень искажений, то есть в сабвуферах и в устройствах для промышленного использования.

Однако со временем все изменилось, и благодаря сегодняшнему быстродействию транзисторных ключей, использованию передовой техники обратной связи можно разработать устройства класса D для всевозможных применений, включая и звуковой усилитель в машину. Они характеризуются высоким уровнем мощности, небольшими размерами и низким уровнем искажений, сопоставимым с хорошей конструкцией класса AB.

Усилитель класса D: схема структурная

Он может быть реализован в аналоговой или цифровой форме. Аналоговый вариант обычно состоит из компаратора, генератора треугольного сигнала и нескольких блоков для преобразования входного сигнала перед подачей его на выходные МОП-транзисторы. Схема такого аудиоусилителя показана на рисунке ниже.

усилитель класса d схемаЗвуковой сигнал сначала преобразуется в импульсный широтно-модулированный (сокращенно ШИМ). Подобно сигналам в схемах цифровых устройств, принимающих всего два уровня – логических 1 и 0, он также имеет всего два уровня – высокий и низкий. Однако переменный уровень входного аудиосигнала содержится в таком его параметре, как длительность импульса. Чем больше входной сигнал, тем меньше длится импульс. Конечно, такая замена аналогового сигнала, способного принимать бесконечное число значений на любом интервале длительности импульса ШИМ-сигнала, всего одной величиной этой длительности приводит к потере информации. Но чем бльше частота следования импульсов, тем точнее воспроизводится впоследствии звук. Как же именно преобразует его усилитель класса D? Схема его содержит выходной каскад на полевых транзисторах, показанный отдельно на рисунке ниже. усилитель d классаОни усиливают входные импульсы, не внося в их форму практически никаких искажений. Усиленный ШИМ-сигнал, проходя далее через выходной фильтр нижних частот, вновь преобразуется в аналоговую форму, представляющую усиленный входной сигнал.

Еще раз о мощности, рассеиваемой выходными транзисторами

Простой усилитель звука (класса A или AB) имеет по крайней мере одно из выходных устройств (в виде биполярного или полевого транзистора), которое проводит ток в любой момент времени. Текущий через него ток I проходит через переход коллектор-эмиттер (или сток-исток), где есть некоторое падение напряжения U. Даже если нет выходного сигнала, небольшое количество тока должно протекать через транзистор. Поскольку величина P = U*I определяет рассеиваемую мощность, то некоторое тепловое рассеяние на нем имеет место. С увеличением выходного напряжения уровень заряда на транзисторе будет падать, но текущий ток при этом увеличится. При насыщении (отсечке) напряжение между коллектором и эмиттером (стоком-истоком) будет низким, но текущий ток станет довольно высоким. И наоборот, при низком уровне выходной мощности текущий ток небольшой, но большое падение напряжения. Это приводит к кривой рассеиваемой мощности, которая зависит нелинейно от выходной мощности. Существует ненулевое минимальное тепловое рассеяние (минимальный КПД) и точка, где достигается КПД около 78 % в устройстве чистого класса AB, и 25 % или менее — в классе A.

Простой усилитель звука класса D, с другой стороны, основывает свою работу на переключении выходного транзистора между двумя состояниями, а именно «Включено» и «Выключено». Прежде чем обсуждать конкретные подробности схем, мы можем сказать, что в состояние «Включено» определенное количество тока протекает через устройство, в то время как теоретически на переходе сток-исток практически не падает напряжение, подаваемое от источника питания (да, почти каждое устройство класса D использует МОП-транзисторы), следовательно, рассеиваемая мощность теоретически равна нулю. В выключенном состоянии падение напряжения будет равно полному напряжению питания, так что транзистор подобен разомкнутому участку цепи, через который ток не течет (что очень близко к реальности).

Что такое ШИМ-сигнал?

Выходные транзисторы усилителя D-класса могут создавать на выходе усилительного каскада всего два уровня напряжения, соответствующие двум вышеупомянутым состояниям. В таком случае синусоида не может быть представлена этими двумя возможными уровнями. На самом деле аудиосигнал модулирует длительность выходных прямоугольных импульсов, которые длятся от одного состояния транзистора до другого, так что информация о нем все же сохраняется. Теперь нам нужно понять, как делается подобная модуляция и как восстановить усиленный звуковой сигнал из импульсного. Наиболее распространенным способом, используемым в устройствах класса D, является ШИМ прямоугольных импульсов. Хотя частота следования последних фиксирована, длительность их меняется в зависимости от входного звукового сигнала. Таким образом, когда входной сигнал увеличивается, длительность импульсов нарастает, а паузы между ними сокращаются, и наоборот.

Схема, генерирующая ШИМ-сигнал

Он обычно генерируется путем сравнения входного сигнала с последовательностью импульсов треугольной формы. Оба сигнала подаются на вход компаратора, как это показано на рисунке ниже.

усилитель звука для автоТреугольные импульсы определяют амплитуду входного аудиосигнала для полной модуляции и частоту переключения выходных транзисторов. «Цифровой» выход компаратора использует стандартные логические уровни, где 0 В соответствует логическому нулю, а 5 В – логической единице. Из-за этой квазиоцифровки ШИМ-сигнала усилители, использующие его, иногда ошибочно называют цифровыми усилителями. На самом деле весь процесс является больше аналоговым, чем цифровым. Скорее всего, ШИМ-сигнал можно отнести к дискретным сигналам, а частота следования его импульсов является частотой дискретизации исходного аналогового сигнала.

Как генерируется ШИМ-сигнал

Нижеприведенный рисунок иллюстрирует, как звуковой сигнал преобразуется в форму ШИМ с использованием компаратора, который сравнивает аудиосигнал, состоящий из синусоидальных волн-гармоник сравнительно низкой частоты, с треугольным сигналом гораздо более высокой частоты.

усилитель звука класса dНа выходе компаратора формируется высокий уровень, если мгновенное напряжение треугольной волны ниже, чем у звукового сигнала, или низкий, если оно выше. Логика данного преобразования может быть и обратной. Тогда высокий уровень сформируется, если треугольный сигнал превысит синусоидальный, а низкий – в обратном случае, как показано на рисунке ниже.простой усилитель звука

В любом случае выход компаратора состоит из серии импульсов, чья ширина изменяется в зависимости от мгновенного уровня входного сигнала. Средний уровень ШИМ-сигнала имеет ту же форму, как и исходный звуковой сигнал.

Как восстановить аудиосигнал из ШИМ-сигнала

Чтобы получить из дискретного ШИМ-сигнала точную копию входного аналогового напряжения, частота его дискретизации должны быть намного выше, чем максимальная частота в его спектре. Согласно теореме Найквиста (в отечественной теории электросвязи используется ее аналог – теорема Котельникова), это превышение должно быть, по крайней мере, двойным, однако в высококачественных усилителях с низким уровнем искажений используют большую кратность (обычно от 5 до 50).

ШИМ-сигнал, усиленный выходным транзисторным каскадом, содержит низкочастотные компоненты, которые полностью воспроизводят спектр входного аудиосигнала. Но он также содержит компоненты с частотой дискретизации (и ее гармоники), которые должны быть удалены для того, чтобы восстановить оригинальный модулирующий звуковой сигнал. Мощный фильтр нижних частот необходим для достижения этой цели. Обычно в его качестве используется пассивный LC-фильтр, потому что в нем почти нет потерь, и он имеет малое или почти отсутствующее рассеивание. Хотя всегда должны быть некоторые потери, на практике они являются минимальными.

Цифровая реализация

Цифровой усилитель D-класса состоит из блоков обработки и передачи цифровых данных, реализованных на микроконтроллере, и блока генерирования ШИМ-сигнала. Он может быть реализован как внешнее, автономное устройство к уже готовой аудиосистеме. Однако это ведет к дополнительным расходам (нужно приобрести и припаять микросхемы) и потенциальному росту стоимости отладки интерфейса между источником входного аудиосигнала и усилителем.

Усилитель звука на микросхеме микроконтроллера характеризуется следующим:

• частота ШИМ-сигнала (дискретизации) должна быть не менее чем в 10 раз выше, чем максимальная частота входного сигнала, чтобы можно было его адекватно реконструировать на выходе усилителя;

• высокой разрешающей способностью процесса управления шириной ШИМ-импульсов для предотвращения искажений квантования выходного сигнала;

• наличием метода взятия выборок входного аналогового сигнала;

• быстродействующим ядром для цифровой обработки и управления данными;

• интерфейсом для передачи ШИМ-сигнала на внешние MOSFET-транзисторы.

Примером реализации устройства, способного удовлетворить все эти требования, является 32-разрядный микроконтроллер типа SiM3U1xx с быстродействующими периферийными устройствами ввода/вывода производства компании Silicon Labs (Остин, Техас, США). Эти микроконтроллеры однозначно подходят для нетрадиционных приложений типа усилителей мощности класса D, непосредственно подключающихся к динамикам. Единственные внешние компоненты, необходимые для аудиоусилителя на SiM3U1xx, являются дроссель и несколько конденсаторов. Устройства ввода-вывода также имеют программируемое ограничение тока, позволяют использовать до 16 уровней громкости без необходимости прошивки для масштабирования аудиоданных, экономя при этом время и объем памяти. Поскольку они запитаны отдельным от остальной части устройства напряжением, то их можно подключать к внешним мощным МОП-транзисторам.

цифровой усилитель d класса

SiM3U1xx-устройства также включают USB-трансивер, совместимый с USB-аудиоинтерфейсом, встроенную флэш-память на 256 Кб, два 12-разрядных аналого-цифровых преобразователя, осуществляющих оцифровку потокового аудио с ПК или портативного музыкального проигрывателя. Структурная схема устройства показана на рисунке. Оно вполне может использоваться как усилитель в машину.

Усилитель класса D | Микросхема

Как ни странно, но усилители D класса были разработаны ещё в 1958 году. Хотя, если упоминание про нанотехнологии относить к 1959 году, то нисколько не странно (прим. AndReas). И вообще середина прошлого столетия была богата научными разработками, которыми мы лишь сейчас начинаем использовать, а нового, на мой взгляд, практически ничего не предлагается. В полной мере сказанное относится и к усилителям класса D, которые завоевали особую популярность именно в начале 21 века.

Преимущества усилителей D класса

Вообще каждому классу усилителей звуковой частоты присущи свои достоинства и недостатки (подробнее о классах усилителей), определяющие диапазоны их применения. Для D класса неоспоримыми плюсами являются низкая мощность рассеяния и тепловыделение, малые размеры (на фото размер готового устройства на 400 ватт сопоставим с размером батарейки) и стоимость, продолжительное время работы в автономных устройствах (при автономном питании линейный выходной каскад опустошит батарею гораздо быстрее, чем усилитель класса D).

Ключи выходного каскада такого усилителя коммутируют выход с отрицательной и положительной шиной питания, создавая тем самым серии положительных и отрицательных импульсов. Теоретический КПД усилителей класса D равен 100%. То есть, все питание подается на нагрузку. Но, конечно же, на практике MOSFET (МОП-транзисторы) не являются идеальными переключателями и обладают сопротивлением. Соответственно, на них тратится часть энергии. Но все же КПД усилителей звуковой частоты D класса выше 90%. По сравнению с коэффициентом полезного действия максимум 78% для УНЧ B класса, являющимся самым производительным из линейных, показатель >90% это весомый аргумент экономичности класса D.

Цифровой или все-таки импульсный?!

Часто подобные усилители называют цифровыми. Этот термин прочно за ними закрепился, однако название цифровой усилитель некорректно. Работа УНЧ класса D основана на широтно-импульсной модуляции (PWM). Следовательно правильнее их называть импульсными усилителями. Почему же их называют цифровыми? Все очень просто. Принцип работы усилителя схож с принципом работы цифровой логики. Как вы знаете, в цифровой технике и электронике применяется двоичная система счисления. А иначе можно сказать «есть» и «нет» или «истина» и «ложь» или «1» и «0» или 5 вольт и 0 вольт. Примерно также работает и усилитель класса D, что связано с применением в выходном каскаде МОП-транзисторов. В последние годы все более упоминаемым является класс T. В коммерческих целях он выделен в отдельную линейку усилителей. Но, по сути, он является дальнейшей реализацией класса D.

Кратко о принципе работы усилителя

Существует полумостовая топология включения и мостовая. Ниже на рисунках приведена их реализация на практике.

Как можно увидеть по полумостовой схеме включения, в каждый момент времени должен быть открыт только один транзистор. Если откроются оба, то произойдет короткое замыкание, сила тока резко увеличится, что приведет к выходу из строя выходные МОП-транзисторы. В момент открытия один из транзисторов усиливает положительную составляющую напряжения, другой – отрицательную относительно нулевого проводника. Но существует период времени, названный «мертвым», когда оба ключа закрыты. Так вот это время должно быть в пределах 5…100 нс. В конечном счете, оно влияет на все характеристики готового усилителя: и качественные, и мощностные.

Если вы хотите получить качественный звук, то «мертвое время» должно быть наименьшим. Но при этом увеличивается вероятность короткого замыкания (как говорилось выше). Поскольку МОП-транзисторы могут не успеть переключиться. Поэтому при выборе радиодеталей для усилителей класса D нужно выбирать высокоскоростные компоненты.

Ключевые рекомендации

При выборе мощных полевых транзисторов нужно отдавать предпочтение МОПам с низким сопротивлением канала и низким уровнем заряда затвора. Наиболее удачным решением для этого служат транзисторы серии IRFI4024x-117P в изолированных 5-выводных корпусах TO-220 FullPak компании International Rectifier.

Во многом идеальная форма тока нагрузки зависит от ШИМ-компаратора. Вот лишь некоторые ШИМ-контроллеры:

Одной из последних разработок компараторов такого класса стал ШИМ-контроллер IRS20955S. Применение IRS20955S исключает из схемы до 27 внешних компонентов. Встроенный генератор «мертвого времени» устанавливает точное значение данного параметра для обеспечения максимального уровня качественных параметров усилителя D класса, а именно, низкий коэффициент гармонических искажений и шум, а также высокая устойчивость к помехам. Задержка на переключение МОП-транзисторов может устанавливаться в 15, 25, 35, 45 нс. IRS20955S работает на частотах до 800 кГц и может применяться не только в полумостовых схемах с двухполярным питанием, но и в мостовых схемах с однополярным. Совместно с транзисторами серии IRFI4024x-117P можно вдвое уменьшить общий размер печатной платы для усилителя мощности до 500 ватт.

При проектировании печатной платы для усилителей мощности класса D нужно обязательно придерживаться схемотехнических способов конструирования высокочастотных устройств. Располагать дорожки на печатной плате нужно только в одном направлении, а не в хаотичном порядке. Это поможет избежать появления ВЧ составляющей. Минусовые дорожки нуждаются в устранении наводок с силовых линий путем установки керамических конденсаторов емкостью 1 нФ и 10 нФ.

Практическая часть: схема усилителя класса D

В заключение теоретической части нашего обзора хотелось бы отметить, что все классы усилителей имеют достоинства и недостатки. Где-то оправдано применение одних и совершенно нерационально применение других. Некоторые радиолюбители при конструировании усилителей мощности звуковой частоты отдают предпочтение одному-двум классам и совершенно не приемлют остальные. Другие же, являясь универсалами, пробуют свои силы в большинстве классов усилителей, выбирая лучшие конструкции. Мы же советуем обратить внимание на D-класс. Их сборка не так и сложна, как может показаться.

Если вас, уважаемые радиолюбители, заинтересовала затронутая тема, можете высказываться, делиться идеями, и мы в дальнейшем ещё не раз вернемся к рассмотрению подобных самых популярных схем усилителей. Из ранее опубликованного можем посоветовать усилители D класса на 300, 900 и 1200 Вт от Алексея Королькова. А сейчас хотим представить простую полумостовую схему усилителя D класса с выходной мощностью 120 ватт.

КПД усилителя составляет 96% при нагрузке на динамик импедансом 4 Ом. В качестве ШИМ-контроллера применяется IRS20955S. На выходе стоят мощные МОП-транзисторы IRFI4212-117P, разработанные специально для D класса. Точнее, это сборка из двух MOSFET, соединенных по полумостовой схеме. КНИ при полной мощности составляет 1%; при 60 Вт – 0,05%. Диапазон воспроизводимых частот от 20 Гц до 35 кГц. Питается усилитель от двуполярного источника напряжением +/-40 вольт. Все номиналы радиодеталей указаны на схеме.

Обсуждайте в социальных сетях и микроблогах

Метки: УНЧ

Радиолюбителей интересуют электрические схемы:

УНЧ 900 Вт — Класс D
Ламповый усилитель

Усилитель класса D.

Здравствуйте читатели и любители собирать своими руками. Технологии на месте не стоят. Кто бы мог подумать, что место аналоговых займут цифровые. Класс D — режим, в котором активные элементы каскада работают в ключевом (импульсном) режиме.
Для D класса неоспоримыми плюсами являются низкая мощность рассеяния и тепловыделение, малые размеры.
Далее продолжение.
Обзор написал спустя более года после покупки этого усилителя. Что бы не было потом, что типа Китай и долго не проработает.
Сам усилитель компактный и можно встроить в любой подходящий корпус.
Параметры усилителя:
— Model: Y148
— PCB board size- 50*70mm
— Adopts YDA148 high-efficiency digital audio power amplifier IC
— DC input voltage: 9~15V
— Current: 2~4.5A
— Power output at DC 15V input: 15W x 2 (8 ohm), 30W x 2 (4 ohm)
— Power output at DC 12V input: 10W x 2 (8 ohm), 20W x 2 (4 ohm)
— Needs heat sink at 4 ohm, doesn’t need heat sink at 8 ohm
— Frequency response: 10Hz~20KHz(±0.2dB @1KHz)
— Load speaker: 4 / 6 / 8 ohm
— SNR: at least 90dB

Вот ссылка на более подробное описание. m5.img.dxcdn.com/CDDriver/CD/sku.93121.xls.
emtb.pl/pliki/glosnik_bt/YDA148_D-510_en-2.pdf

Немного фото.


Работает в паре с этими колонками.

Немного теории.
Преимущество усилителей класса D
В обычном усилителе выходной каскад содержит транзисторы, обеспечивающие необходимое мгновенное значение выходного тока. Во многих аудиосистемах выходные каскады работают в классах A, B и AB. В сравнении с выходным каскадом, работающим в D классе, мощность рассеяния в линейных каскадах велика даже в случае их идеальной реализации. Это обеспечивает D классу значимое преимущество во многих приложениях вследствие меньшего тепловыделения, уменьшения размеров и соответственно стоимости изделий, увеличения времени работы автономных устройств.

Обозреваемый усилитель используется с компьютером. И запитан от него же. Меня устраивает качество звука. Звёзд с неба не хватает. И со своей задачей справляется.
Плюсы усилителя:
Небольшие размеры. Можно встроить в любой корпус.
Диапазон питающего напряжения.
Стоят на выходе дроссели. Нет высокочастотных шумов.
Очень маленький нагрев. Можно подстраховаться и поставить небольшой радиатор.
Высокий КПД 90-93%. То есть вся мощь идёт на работу а не нагрев.
Меня этот усилитель устраивает на все сто. Доказано практикой.
P.S.
Что бы сделать толковый обзор нужен генератор сигналов. Осцилограф. И мощные резисторы в качестве нагрузки.
До этого собирал усилки на транзюках. Потом на микросхемах. Есть с чем сравнивать.
Собранный очень давно усилитель на STK4162



Усилитель класса D

Добрый день!
Обзор мощного усилителя Д класса, который не совсем оправдал ожидание.
Кому интересно, прошу под кат.

На волне растущей популярности цифровых усилителей – решил тоже купить, удовлетворить любопытство.
Плюсы по сравнению с усилителями класса АБ очень заманчивые – не нужны большие радиаторы, высокий кпд, меньше заморок с питанием, компактность.

Был выбран именно кит, точнее основная плата (main board) от готового усилителя. Выбирал что бы помощней и дешевле.
Вот готовый усилитель в корпусе и с блоком питания (14В/4А), в котором такая же плата.

Плата обходится в 3 раза дешевле, но требуется приложить руку.
Технические характеристики чипа.

Трек

Дополнительная информация


Посылка.

Несмотря на смятый в гармошку угол, все в целости.

Попросил продавца дополнительно кинуть в посылку штекер питания, чтобы сразу проверить работоспособность.


Крупный план.

Дополнительная информация


Регулятор громкости, который заявлен как «Original Japanese ALPS» скорее всего фейк.
Хорошо видна микросхема усилителя tpa3123d2 и операционного усилителя NE5532.

Тестовый запуск. Блок питания от древней магнитолы, 14,5 В около 2А. Акустика на 15ГДШ в корпусах от той же магнитолы.


Планируемый корпус. Глубина 120 мм, высота 60 мм, ширина 220 мм.

После

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *