3D принтер из трубы – Самодельный 3D принтер из пудручных материалов. Бюджет около 5 тыс. Печать на холодном столе

  • Home
  • Разное
  • 3D принтер из трубы – Самодельный 3D принтер из пудручных материалов. Бюджет около 5 тыс. Печать на холодном столе

Самодельный 3D-принтер со сварной рамой. Часть первая: начало проекта.

На самом деле все началось с другого проекта, который живет в моей голове и портит мне жизнь уже не один год…

О нем я, возможно, напишу в другой статье. Но суть такова, что для его реализации требовалось изготовить сварную раму из нержавеющего уголка, рассчитать и спроектировать цепную передачу. Ну и много чего еще. Все это требовало много работы на станках, особенно на фрезерном.

Стоит отметить, что для для нагрузок, с которыми связана работа проектируемого устройства, и сварная рама, и стальная цепь, и прочие ‘железяки’ очень избыточны.

В общем думал я как облегчить себе жизнь, думал… И тут мой руководитель покупает себе 3D-принтер! Конечно о технологии 3D печати я знал и раньше. Но после того как он принес напечатанные на своем принтере детальки, чтобы похвастаться, на меня снизошло озарение!:) Вот оно решение большинства проблем связанных с моим проектом!

Так начался проект 3D принтера.

Покупать китайские поделки как-то не хотелось, а отдавать кучу денег за что-то более-менее приличное стало жалко. Естественно решил делать принтер сам. Руки вроде из правильного места растут. С SolidWorks дружу. Кое что из железа уже было. Остальное буду заказывать.

Сразу решил делать капитально. На рельсовых направляющих и со сварной рамой.

Сварную раму решил делать по нескольким причинам:

  • Стальные трубы дешевле и прочнее алюминиевого профиля.
  • В гараже есть сварной стол и два сварочных аппарата. Один полуавтомат, другой TIG.
  • Металлобаза в шаговой доступности от гаража.
  • Варить, вроде как, получается неплохо, хоть я и не профессиональный сварщик.
  • На квадратных трубах выходит неплохая компоновка узлов. Полости в трубах будут использованы.
Конечно сварка рамы для ЧПУ это очень кропотливое дело. Поэтому конструкция будет состоять из нескольких сваренных частей, которые будут соединены болтами. Это даст возможность точно выставить геометрию.

Вот фотки того, что уже есть на данный момент:

1. Две каретки и две направляющие THK HSR20 длиной 580 мм. Рельсы и одна каретка Б/У, вторая новая. В принципе люфтов и закусываний вообще не чувствуется. Новая каретка ходит плавнее старой, но не могу сказать что разница колоссальная. Планирую поставить их на ость Z.

[IMG ID=143449 WIDTH=431 HEIGHT=322]

2. Два шаговых двигателя Nema23 Vexta C8940-9212K 2.8A

[IMG ID=143451 WIDTH=445 HEIGHT=333]

3. Два шаговых двигателя Nema23 Minebea-Matsushita 23KM-K142-G1V 3.2A[IMG ID=143446 WIDTH=431 HEIGHT=322]

4. Два драйвера HY-DIV268N-5A (TB6600)

[IMG ID=143447 WIDTH=431 HEIGHT=322]

5. Три драйвера TB6600 ноунейм (типа улучшенные, есть деление шага на 32)

[IMG ID=143448 WIDTH=431 HEIGHT=322]

Вот набросок сварной рамы принтера.

[IMG ID=143450 WIDTH=544 HEIGHT=536]

Кинематику думаю делать либо H-Bot, либо CoreXY. Пока не решил. Скорее всего остановлюсь на CoreXY. Тогда часть ремней будет находиться внутри трубы на которой нет двигателей.

Двигатели мощные для 3d принтера но уж какие есть. Зато качественные 🙂

Мозгами пока что будет Arduino Mega + Ramps. Для попробовать и освоиться думаю в самый раз. Потом, если будет необходимо, перейду на 32 бита.

По направляющим для осей XY пока думаю. Скорее всего буду брать оригинальный Hiwin. Китай, конечно, дешевле в разы, но азартным человеком я не являюсь. Один раз потратиться на хорошие направляющие, которых, при должном уходе, хватит на много лет, по моему правильное решение.

Продолжение следует…

P/S

Это моя первая статья. Не стесняйтесь писать в комментариях конструктивную критику 😉 Возможно у кого-то будут идеи по конструкции рамы, или еще какие-то замечания и предложения. С радостью прочитаю!

3D принтер H-Bot на рельсах из стального профиля без печатных деталей своими руками.

‘Не бойся делать ,то чего не умеешь, соблюдая технику безопасности. Ведь Ковчег построил любитель, ‘Титаник’ — сделали профессионалы.’

Идея построить 3Д принтер возникла давно, так как занимаясь моделированием и радиолюбительством ,часто сталкивался с необходимостью изготовления корпусов или конструктивных элементов для поделок.

Поизучав вопрос, понял ,что покупать готовый набор неинтересно . Решено было изучить вопрос глубже и набить шишек побольше. Причём без использования готовых печатных деталей, а только из того что под рукой или в хозмаге.

Проект сделан полностью в Solidworks. Название поделке присвоил ‘Metall Bot’. Постройка заняла примерно 5 месяцев. Общий бюджет примерно 33 т.р. Ремень GT2 10мм. Рабочее поле 300х300х240. Стекло стола обычное 5мм ,заказано в стекольной мастерской. Нагрев стола — силиконовый нагреватель 220 вольт на 250 Китайских ватт 🙂 Управление нагревом стола через твердоельное реле однофазное CCP-25DA 3-32V DC до24-380V . Электроника MKS Robin. Драйверы на X-Y TMC2100, а на Z и экструдер DRV8825. Двигатели NEMA 17. Блок питания один на 12 вольт, второй на 24 вольта. Установлена плата управления электропитанием MKS PWC V2.0 для автоматического отключения. Индуктивный датчик уровня пока что не настроен. Катается пассажиром. С прошивкой пока не разобрался до конца с его настройкой.

Первый рабочий вариант.

Модификация оси X.

Видео работы.

Для рамы использована стальная профильная труба 30х30х2 На всё хватило одной трубы 6 метров. Распиливалось и зачищалось в буквальном смысле на полу дома и над раковиной на кухне.

После подгонки размеров всё было сварено в гараже одним замечательным и очень отзывчивым человеком. Сначала сварена одна задняя стенка с последующей зачисткой и сверловкой.
Сверлил Китайской стойкой для дрели , с зажатым в ней патроном от шуруповёрта через отверстие в магните , чтобы потом не выковыривать стружку из пяток после этого творческого безумия 🙂 С обратной стороны трубы , на которой крепятся рельсы сделаны отверстия диаметром 10мм для того чтобы торцевой головкой удерживать гайку крепления рельсы.
Потом собрана и сварена полностью вся остальная рама . На каждом этапе сборки тщательно контролировались углы, геометрия и диагонали. Приходилось рихтовать кувалдой через деревянную проставку. Окрашено из баллончика на балконе в замечательный красный цвет. Корпуса двигателей , опора стола, полотно стола было выпилено из стеклотекстолита и склеено эпоксидной смолой с обязательным обезжириванием и зачисткой шкуркой места склеек.
Столик сделан из алюминиевого профиля 15х30 с креплением на заклёпки. Стеклотекстолитовые детали перед установкой покрывались цапонлаком. Ось Х первоначально была сделана из полосы стеклотекстолита на двух каретках MGN12H. Но первые опыты показали неустойчивость и ‘гуляние’ оси при работе из за маленькой площади опоры.
Крепление экструдера к каретке было выпилено и согнуто из алюминиевого радиатора от какого то устройства. Крепление ремня сделано из текстолита 10мм и притянуто болтами от советской розетки 🙂

Вид стал вырисовываться.

После первых запусков ,напечатаны корпуса и детали для электроники. Рельсы смазываю смазкой для шрусов. Печатаю пока что пластиком PLA , пластик очищаю обычным ватным кругляшком с каплей силиконового масла, зажимаю канцелярским зажимом.
После недолгой эксплуатации переделал ось Х. Использовал алюминиевую П-образную полосу 5мм . Установил по две каретки MGN12C на каждую сторону. Под рельсы положил по алюминиевой полосе шириной 30 мм.

На оси XY поставил более мощные двигатели NEMA 1717HS8401.

Установил обдув от Дельты. Изнутри подсветка из светодиодной ленты. Отверстия для крепления рельс изнутри. Вид сзади. В дальнейшем планирую попробовать кинематику Core XY , проектирую детали.

Спасибо. Всем удачи. 🙂

Самодельный 3D принтер из металлолома


Мечтаете купить 3D принтер? Не спешите — сделайте сами своими руками из того, что есть в мастерской.

Данный 3D принтер состоит из деталей старых пишущих машинок, матричных принтеров и другого металлолома. Каркас принтера выполнен из нержавеющей трубы.

Посмотрите ролик, в котором мастер рассказывает и показывает весь процесс создания и работы 3D принтера

Самодельный 3D принтер:

Усовершенствованная версия 3D принтера:

Изготовление экструдера:

Горячий стол:

Принтер почти готов:

Как разрабатывался 3D принтер:

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

3D принтер своими руками

Всем привет! Т.к. это мой первый опыт в написании статей, сборке 3D принтера и т.д., то прошу сильно не ругать в комментариях. Поехали!

Немного о себе. Занимаюсь электроникой с 13 лет. В частности программированием микроконтроллеров. Учусь по этой же специальности. Иногда под вдохновлением делаю всякие интересные и не очень вещи.

Стояли очередные серые будни в общежитии моего университета, я, как обычно, зашел на ЮТУБ и мне в рекомендациях выскочило видео, где человек рассказывал про свой 3D принтер из какой-то доски, который занимал уйму места. И тут я подумал, а чем я хуже?

Начался поиск информации о самодельных 3D принтерах, так я узнал что такое RepRap и наткнулся на очень интересного человека: Еремин Сергей где он собрал 3D принтер из старых аппаратов и получил довольно-таки качественную печать. Я сидел на парах и просто читал. Вдохновившись его статьями, которые я перечитал по несколько раз, я решил взяться за дело.

Т.к. я бедный студент я решил поставить себе ограничение по бюджету в 50$ (позже было выяснено что этого очень мало и бюджет вырос до 60$). Нужно было экономить. И начать я решил с самого дорогого, на мой взгляд, с шаговых двигателей и направляющих. Пробежав по барахолкам, и местным аукционам я нашел одного человека, у которого были куплены 4 ШД. EM-34, 3 шт. EM-181, а так-же 4 направляющие от А3 сканеров, диаметром 12,3 мм и длиной 46 см. По цене 2,5$ за один шаговый двигатель и 2,5$ за пару направляющих (позже я купил еще одну направляющую, в итоге всех 5 шт.). Два ШД EM-34 пошли в запас, остальное в ход.

Раму я решил делать на подобие PRUSA i3, так как начитался про ‘жидковатость’ рамы PRUSA i2. Начался поиск материала. Полазив по чердаку, я нашел какой-то блок (на котором было выбито БУП, как я расшифровал — блок управления питанием, если кто знает что это такое — напишите в комментарях) который был благополучно разобран мною на составляющие. Это 2 уголка, 4 узких и 4 широких (на фото нет) алюминиевых профиля. Отмыв эти профиля и поработав мозгами, ножовкой по металлу, стуслом и напильником, у меня получилась вот такая конструкция. На правой направляющей виден неудачный вариант держателя направляющих из текстолита. Из широкого профиля я вырезал вертикальные стойки оси Z. Тем временем ко мне пришла первая партия запчастей из Китая. Ремень GT2 (2 метра) и шпули для него (уже на шаговиках), хотэнд E3D V5 с тефлоновой вставкой (в термобарьере), экструдер и трубка Боудена с пневмофитингами под резьбу М8 (не понимаю, накой китайцы такие фитинги к трубке ложат. В хотэнде он уже установлен, а в экструдере резьба М6). Даже не знаю, стоило ли вкладываться в экструдер Боудена… В планах печать флексом, а как я прочитал, им можно только на директе печатать…

Дальше я вырезал из профиля горизонтальную поперечину, засверлил все, нарезал резьбу и прикрутил к раме. Вышло не плохо. Но во избежание заваливания оси Z нужно добавить косынки по бокам.

Рассчитываем косынку (пригодились школьные знания геометрии 🙂 Урааа!), вырезаем, дорабатываем напильником края и прикручиваем. Теперь ось Z никуда не денется 🙂 Из гетинакса толщиной 8 мм я вырезал стойки для шаговиков привода оси Z. Наконец ко мне пришла электроника для 3D принтера и подшипники для роликов ремня, заодно заказал зубчатое колесо для экструдера (как оказалось зря, родное вполне хорошо справляется со своей задачей). Стандартный набор: Arduino Mega на МК ATMega2560, RAMPS1.4, Драйвера ШД A4988, дисплей и переходник к нему со шлейфом. Дисплей нарочно брал графический 128 на 64 точки, ибо более дешевый знакосинтезирующий 2004 менее информативный и поддерживает только английские и китайские закорючки.

По качеству. Вот лучше бы китайцы продавали все это дело в виде набора для сборки, особенно RAMPS. Если SMD детали они и научились феном паять, то выводные — будто в школе на уроке труда паяли. Меня такое не устраивает, поэтому пришлось часок, другой поорудовать паяльником. Надоело выравнивать все разъемы!

Спустя несколько часов работы паяльником, этиловым спиртом, мылом и водой получается это. Осталось скачать Marlin поковырять настройки и в добрый путь!

Только я разобрался с электроникой, пришла следующая посылка. На этот раз 1 кг PLA пластика зеленого цвета и два пробника (Watson и BFWood) от компании bestfilament. Кстати, не сочтите за рекламу, заказывал на сайте printers3d.by. Цены хорошие для Беларуси и выбор большой. Дальше начался процесс мозгового штурма над различными креплениями и линейными подшипниками. Сгоняв к своему деду я нашел у него пару ненужных пчеловодных рамок, выдрав из них плечики (верхний брусок рамки) и очистив их от воска я разметил все это дело и засверлил. Для оси X я решил сделать раму, на которой будут закреплены направляющие и ШД. Скрутив ее, разметив и засверлив, я обработал наждачкой внутреннюю поверхность ‘линейных подшипников’ (Сейчас наверняка многие начнут говорить что фу, нельзя так и т.д. Но что мне оставалось делать? Купить — денег нет, да и диаметр 12,3 мм не найти нигде. Выточить не из чего, да и не на чем). Установив все на раму и смазав немного литолом направляющие проверил ход рамы оси X — все в порядке, ходит нормально, люфты есть, но небольшие. Дальше я прикрутил двигателя привода оси Z и установил на них шпильку М8 через муфту в качестве ходового винта. Чтобы острая резьба шпильки при затягивании винтов на муфте не врезалась в алюминиевую муфту я намотал на нее (шпильку) медный провод диаметром 0,8 мм.

Из все тех же брусков от рамок я вырезал крепления для направляющих оси X и саму каретку на которую устанавливается хот-энд. Шаговый двигатель я закрепил к деревянной раме с помощью пластины из металла 3мм. На противоположный конец рамы был установлен ролик ремня из двух подшипников 623Z, сверху и снизу подложил шайбы М3 и добавил сверху широкую шайбу, дабы ремень не слетал и затянул все саморезом. Хот-энд закрепил на каретке с помощью хомута из медной проволоки — просто и со вкусом 🙂

Направляющие оси Y так же закрепил с помощью деревянных брусков от рамок. Линейные подшипники стола сделаны из них же.

Основу стола вырезал из куска какой-то композитной фанеры (бутерброд из ДВП, фанеры и ДВП). Уголок крепления для двигателя оси Y вырезал из алюминиевого крепления двигателя от принтера Epson. Ролик ремня закрепил на уголках из алюминиевой шины. Ремень к столу закрепил через брусок по середине стола. Концевики — советские микропереключатели МП3-1. Концевик оси Z закрепил с помощью медной проволоки, колхоз, зато можно высоту легко регулировать. Дальше я слегка настроил принтер — выровнял раму оси X вращая двигателя оси Z, концевиком оси Z выставил высоту печатающей головки и выровнял столик, подложив под стекло два лезвия от строительного ножа. Как обычно — колхоз, но под конец сборки уже просто не терпится наконец его запустить, хоть как, но запустить.

И так, сначала я, начитавшись про плохую адгезию, решил печатать на оргстекле. Скачав программу Cura я толком в ней ничего не настраивал (за что она мне и понравилась, для новичка самое оно). Выставил скорость печати, высоту слоя, заполнение и температуру. Ну и еще ретракт включил. Все. Скачал модель тестового кубика со стороной 20 мм, отслайсил, закинул на карту, вставил ее в принтер, перекрестился и нажал печать!.. Те ощущения, когда ты смотришь, как паркуется каретка, как греется хот-энд, не описать словами… И вот! Процесс пошел. Естественно сразу всплыли проблемы — я криво выставил высоту сопла. Сначала каретка елозила по стеклу, но через пару слоев я увидел КВАДРАТ! УРАААА! Заработало! Сколько же радости от того, что ты, вот, потратил свои законные 2 месяца каникул, вложил свои силы, деньги и не зря. И теперь эта конструкция работает. А ты смотришь и от радости распирает во все стороны… По окончанию печати я понял — брать оргстекло в качестве столика было плохой идеей. Либо это оргстекло такое, либо я идио… В общем мой кубик вплавился в столик 🙂

Отодрал я его только поломав у основания, ну и пусть. Качество печати меня очень сильно порадовало. Не смотря на то что я толком ничего не настраивал, не подбирал, а просто запустил печать абы как — все было прекрасно. Размеры кубика совпадали.

Поменяв оргстекло на обычное стекло толщиной 4 мм я продолжил распечатывать всякие нужные и не очень штуки. Вышло примерно так: Дальше я скачал модель совы. Т.к. я жмот и зажал пластик — высоту совы выставил 3 см. Не смотря на такие маленькие размеры и мой корявый обдув, сделанный на скорую руку из кулера 80 мм, закрепленного на той-же алюминиевой шинt, из которой сделаны уголки крепления ролика оси Y — сова вполне хорошо отпечаталась. Только на очень мелких слоях, типа ушей, пластик чуть потек. Видео печати тройного обдува (скорость печати 40 мм/с (плохая идея, большие люфты и большое трения в ‘подшипниках’;), слой 0.2 мм, сопло 0.4 мм. Блок питания — доставшийся на халяву БП ATX):

Ну и напоследок немножко самодеятельности в SolidWorks’е (первая модель): На этом я думаю закончить эту статью. Сам процесс сборки я описал, но это еще не конец. Впереди долгий и тернистый путь модификации этой конструкции. В планах отпечатать все деревянные/гетинаксовые детали из пластика, заменить строительные шпильки на трапецеидальные винты, заменить направляющую, сваренную из обрезков, добавить подогреваемый стол и т.д. Прошу по возможности извинить за качество фотографий, корявый текст и прочие косяки. Напомню что это первая моя статья. В скорем времени будут статьи про модернизацию этого принтера, так-что подписываемся 😉 Всем спасибо за внимание!

P.S. Сейчас я нахожусь в поисках направляющих. Ищу направляющую 12,3 мм от принтера/сканера А3 длиной от 35 мм, ну или две направляющие 10 или 8 мм той же длины. Если Вы из РБ и есть таковые — готов купить. Пишите в личку.

3D печать для самых новеньких. От А до Я. Кинематика.

В данной статье мы разберемся, что такое 3D печать и какая бывает кинематика 3D принтеров.

1. 3D печать. Какая она на вкус?

Технологий печати существует большое множество, от FDM (FFF), по которой печатает больше 90% принтеров на данном портале, до SLA/DLP/LCD (с фотополимерами) и SLS/SLM (спекание порошка с помощью мощных лазеров)

Нас на начальном этапе интересует FDM — послойное наплавление расплавленного прутка. На картинке ниже изображен хотенд (Hot end) — та часть экструдера 3D принтера, где происходит расплавление прутка.

Пластиковый пруток подается через тефлоновую трубку и радиатор в термобарьер, и через него в нагревательный блок. Там плавится и выходит через сопло. Сопло имеет определенный диаметр, который маркируется на нем. Часто его делают из латуни, так как материал недорогой,легко обрабатывается. От сопла зависит точность печати. Чем меньше сопло, тем больше ниточек укладывается в один мм. Нагреватель и терморезистор образуют обратную связь для контроля и регулировки температуры. То есть подача напряжения на нагреватель зависит от того какую температуру показывает терморезистор, а процессор сравнивает ее с заданной. Далее видим нагревательный блок. В него с одной стороны вкручивается сопло, а с другой — термобарьер.

Термобарьер служит для того,что бы минимизировать нагрев пластика выше термоблока.

[IMG]http://3d-makers.nethouse.ru/static/img/0000/0002/6151/26151635.2ofdbr37y8.W665.jpg[/IMG]

Наиболее часто выполняется из нержавеющей стали. У нее теплопроводность ниже, чем у обычной,нелегированной стали. Для предотвращения плавления прутка выше термоблока сверху на термобарьер накручивается радиатор и обдувается кулером. Все достаточно просто.

Очень часто возникает протечка расплавленного пластика через резьбу.

Это означает, что сопло не поджало термобарьер в нагревательном блоке. Поэтому при разборке и сборке хотэнда вкручиваем сначала термобарьер в нагревательный блок, а потом поджимаем соплом. Если у вас при закручивании сопла остается зазор между торцем сопла и нагревательным блоком, то это нормально, зазор для того, что бы поджать соплом термобарьер. Для того, чтобы подать пруток в нужное время и в нужном месте необходим фидер (feeder), то есть устройство подачи прутка.

Иногда его выполняют совмещенным с хотэндом, и тогда такой тип экструдера (это все вместе хотэнд+фидер) называют директом (direct), то есть подача прямая, без трубок.

Та же фидер делают отдельно, а подачу прутка осуществляют через фторопластовую трубку. Называют такую систему — боуден (bowden). Это делается для того, чтобы облегчить движущуюся часть. По части положительных моментов и недостатков — у каждой конструкции они,несомненно, есть.

Директ экструдер:

1. Достоинства:

а) Более надежный за счет меньшего числа соединений для подачи пластика;

б) Менее придирчив к материалам, которыми печатает, в частности резиной на основе каучуков проблематично печатать на боуден экструдерах;

2. Недостатки:

а) Большой вес, за счет этого при ускорениях/замедлениях можно наблюдать небольшую рябь на поверхности детали;

б) Габариты. Они очень сильно влияют на область построения. Скажем, как на картинке выше, директ с 4 цветами был бы очень громадным. А для боудена это в самый раз.

Боуден экструдер:

1. Достоинства:

а) Вынесенный мотор снижает вес движущихся частей принтера, а их меньшая инерционность не влияет на поверхность модели;

б) Катушка не дергается вслед за моделью, а то при запутывании витков катушки с директом получим пропуск шагов, так как каретка будет тянуть за собой катушку.

2. Недостатки:

а) Настройки ретракта (вытягивание прутка обратно при холостых перемещениях, что бы расплавленный пластик, расширяясь не сочился из сопла) сложнее, так как пруток меньше внутреннего диаметра трубки, он имеет свойство тянуться;

б) Сложнее, чем на директе, выбрать все зазоры, чтобы печатать различными гибкими пластиками. Все, кто говорит,что на боудене печать невозможна гибкими пластиками — нагло врут. Я печатаю. И вполне успешно.

Теперь переходим непосредственно к механике и ее калибровке.

Часть 2. Механика. Что, как и чем дергает?

Существует весьма ограниченное число кинематических схем, под которые написана прошивка, и которые вполне сносно отрабатывают перемещения.

Рассмотрим все, от самых распространенных:

1. Конструкция и кинематика от Джозефа Прюши ( не надо читать Прусся,Праша и прочее, это имя человека, в конце концов).

Перемещение вдоль каждой из осей обеспечивается своим независимым мотором. Перемещение по оси Z (вверх-вниз) обеспечивается с помощью 2 моторов и с помощью кинематической пары винт-гайка. Часто используются шпильки М5, в последнее время все чаще ставят винты с трапециеидальной резьбой.

Вот винт с трапециеидальной резьбой. Как шпильки с метрической резьбой выглядят прикладывать не буду.

Единственное, что объясню относительно перемещения по шпилькам и трапециям — для производства трапеций берут калиброванный пруток и прокатывают между роликов, находящихся под углом. Получаются винтовые канавки. Такой метод, априори, дает лучшее качество и точность шага, нежели у строительных шпилек по далеко не самому высокому квалитету.

Для подключения одновременно 2 двигателей на одну ось (и на 1 разъем) применяется следующая схема. Соединение последовательное, 2 провода запаиваются, а оставшиеся обжимаются. На цвета можно не обращать внимания, главное, что бы обмотки звонились. А и В это обмотки, а 1 и 2 — выводы.

Плюсы данной кинематики:

1) Независимое перемещение каждой из осей. Легко поймать понять какая ось пропускает шаги. Кинематика перекочевала в принтеры от фрезерных ЧПУ, поэтому многие производители делают на ней настольные фрезерные станки, вместо экструдера предлагают установить лазер для гравировок или резки, шпиндель для фрезеровки плат, экструдер для шоколада или даже теста, что б печь блины.

На фото выше — принтер ZMorph. Он может использоваться и как принтер (с одним или двумя экструдерами), как гравировщик (установка Dremel), лазером для гравировок и так далее. Небольшое презентацонное видео.

Фрезерный станок на этой кинематике. Замечу, что для фрезеровки необходимо использовать для перемещения пару винт-гайка,а не ремни, они не предназначены для таких нагрузок. Принтеры для печати шоколадом и для выпечки блинов по вашему эскизу. Стоит заметить, что шоколадки типа Аленка или Бабаевские использовать не рекомендуется, так как они уже имеют в своем составе какао-масло и при переработке (расплавка и затвердевание) результат непредсказуем. Необходимо использовать шоколад в галлетах, например бельгийский Callebaut, так как в нем нет какао-масла, и для окончательной заливки его нужно добавить. Для такого типа шоколада на каждой пачке есть график его кристализации. Масло желательно брать в порошке. Для более подробной информации рекомендую погуглить про темперирование шоколада. 2) Кинематика проста как два пальца. Ее очень просто собрать. Многие даже собирают на старых DVD дисководах. 3) Легко изменяется под свои нужды, размер экструдера тоже имеет небольшое значение, так как он выступает вперед и не мешает движению остальных частей. Многие ставят второй экструдер, или делают сопла качающимися, что бы сопли одного экструдера не оставались на детали, при печати вторым соплом. Поэтому для данной кинематики существует огромное число вариаций экструдера, на любой вкус, на очень известном сайте.

Недостатки данной кинематики:

1) Сложная калибровка. Да, поскольку стол ‘дрыгается’ печатать сложновато качественно, ибо деталь+стол при резкой смене направления перемещения по инерции стремяться ехать дальше. Получаются некрасивые артефакты печати. И для качественной печати нужна небольшая скорость. А вообще, все зависит от рамы. У меня первым принтером была китайская прюша. С акриловой рамой.

А акрил не очень-то жесткий. А как известно, жесткость принтера как и ЧПУ — самое важное. И печатать можно было более или менее качественно на скоростях 40-50 мм/с. Далее я его пересадил на стальную раму от МЗТО. И после этого без потери качества печати смог печатать на скоростях до 100 мм/с.

2) Деламинация. Из-за открытого корпуса и постоянно перемещающейся платформы горячий воздух, можно сказать, постоянно сдувается, а охлаждая излишне деталь сквозняками мы увеличиваем и без того большую усадку нейлонов,абс и прочих капризных пластиков. Кто-то шьет шубу для принтера из ткани, а кто-то довольствуется и коробками.

Но цель, как всегда, одна и та же — уменьшить влияние сквозняков на усадку детали.

Основные моменты правильной калибровки принтеров с данной кинематикой:

1) Установить принтер на ровную поверхность. Желательно горизонтальную. Для этого необходим пузырьковый уровень. Далее устанавливаем по уровню положение оси X.

2) Переводим в домашнее положение. Делается либо в меню принтера командой Home/Домой, если печатаете с компьютера, то или командой G28 в строку команд, или специальными кнопками с иконкой домика. Далее подкручиваем винт стола так, что бы сопло касалось стекла. Не давило на стекло, а касалось. Смотрим на просвет и крутим. После этого перемещаем экструдер к другому углу стрелками в +Х, +Y с ПК, или через меню Точно так же крутим винтик до соприкосновения с соплом. И повторяем операцию для остальных точек.

Постараюсь избавить вас от ошибок. На фото принтера выше стекло на столе крепится аж 8 зажимами. И вполне возможно, что по центру будет горб. Чтобы избежать подобных проблем стекло стоит закреплять 3 зажимами. Плоскость строится, как известно из начертательной геометрии, по 3 точкам. И калибровка будет проще в этом случае. Просто подкручиваем винт над концевиком по Z.

Чтобы сопло касалось стекла посередине той стороны, на которой стоит 1 зажим. Дальше перегоняем хотенд в угол где еще один зажим, подкручиваем винт стола, и повторяем операцию с другим углом.

Касательно вобблинга.

Всякие антивобблинговые системы вроде установки продшипника в верхнюю опору не работают.

Просто потому, что поставить идеально параллельно и в одной плоскости 4 далеко не идеально ровных циллиндра — задача нереальная. Особенно на хлипкой акриловой раме с печатными деталями. Поэтому, если принять за константу прямизну валов, и выставить их параллельно на раме (чисто гипотетически), а винты освободить (снизу муфта для крепления к мотору) и гайки для крепления оси Х. Винты за счет своей кривизны будут вертеться как миксер, но на печать это не будет влиять. Иначе конструкция будет работать на то, кто же окажется сильнее на сопротивление изгибу. И будет получаться далеко не ровная стенка. Оно вам надо?

2. Конструкция по типу кинематики принтеров компании Felix printers.

Таких принтеров много, такие делает МЗТО (mz3d.ru), уже упомянутые Felix. По сути кинематика та же, что и у Prusa. Независимые друг от друга оси. Только теперь стол ездит не вдоль одной оси, а сразу вдоль целых двух. Вдоль оси Z, и по оси Y.

Конструкция стола примерно такая. На валах по Z ездит платформа. Сзади висит двигатель. По рельсам при помощи ремня передвигается стол. Хотенд передвигается только вдоль одной оси. Конструкция весьма забавна, так как стол весит куда больше хотенда, а его пытаются перемещать по 2 осям сразу.

Плюсы данной кинематики:

1) Отсутствует второй мотор по оси Z. Пресловутого вобблинга нет просто потому, что есть 2 вала и 1 винт. Винт, так же не стоит закреплять сверху. Если это не ШВП.

ШВП это отдельная тема. Если брать качественную ШВП, скажем, от тех же Hiwin, то она изготавливается как минимум по 7 классу точности (если катанная, а если шлифованная, то класс еще выше) и устанавливаться должны в подшипниковых опорах. Со стороны привода — 2 радиально-упорных подшипника back-to-back,а с другого конца — радиальный со свободной посадкой для компенсаци теплового расширения.

Цель установки ШВП — обеспечение точности перемещения. Если же ее устанавливать неправильно — деньги на ветер, и точность будет не выше пары винт-гайка с трапециеидальной резьбой. Для FDM c лихвой хватит точности трапеций.

2) Много места для установки директ-экструдера. Как и в предыдущей кинематике есть простор для творчества, подбирать тот самый, единственный и неповторимый экструдер, который вам по душе.

3) Жесткая рама. Есть возможность сделать нормальную раму. Жесткую,прочную. Да хоть чугуниевую. Ребята из Феликса решили не забивать голову и лепят из алюминиевого профиля. МЗТО пошли дальше, погнули стальной лист. А полку под установку стола отфрезеровали из листа алюминия.

4) Если брать конструкцию Феликса на профиле, то с помощью замены пары кусков профиля и винта по Z можно увеличить область печати.

Только обязательно добавить жесткости. А то получится как это чудо конструкторской мысли. Большое, бессмысленное и беспощадное.

Недостатки кинематики:

1) Несомненно, большие дергающиеся массы. Стол вперед-назад,а если включить движение по Z при холостых перемещениях (Z-hope), то будет дискотека.

2) Нет возможности сделать ему нормальную термокамеру. Стол двигается вперед-назад и градиент температуры просто сдувается. Отсюда проблемы при печати нейлонами или ABS. Небольшие сквознячки в комнате с легкостью покажут вам где раки зимуют как усаживается материал.

Калибровка стола данного принтера аналогична калибровке стола у Prusa, только несколько проще. Проще за счет того, что ось X вам выставлять по уровню не надо, она автоматически выставлена при сборке рамы. Подводим сопло к столу и крутим барашки.

3. Кинематика Ultimaker.

Одна из наиболее распространенных вариаций Cartesian кинематики.

Таких принтеров не очень много, но они есть. Вариация от Zortrax заслуживает внимания. Вариант того же Raise более приближен к классике. У Zortrax установлены двойные валы, причина проста — на них стоит директ экструдер с полноразмерным двигателем Nema 17. У Raise Dual стоит двойной директ экструдер, поэтому классические 6 мм валы заменены на 8 мм. А общий вес ‘головы’ составляет почти 900 грамм. Кинематика построена полностью на валах. Они выступают одновременно и как направляющие, и как шкивы. Кинематика так же относится к Cartesian кинематикам с независимым перемещением вдоль каждой оси своим мотором. Очень привередлива к прямоте валов. Если использовать кривые валы можно получить весьма забавные артефакты на стенках моделей. И они будут по всем 3 координатам. Чаще всего это выглядит как разная толщина первого слоя и небольшие волны по стенкам. Поэтому вся соль и высокая цена оригинальных Ultimaker только в качественных комплектующих. А именно в прямых валах. Ремни используются часто кольцевые, что упрощает систему их натяжки, так как важно, чтобы все 4 ремня были одинаково натянуты.

Плюсы данной кинематики:

1) Стол движется только вдоль одной оси. Вертикальной. И градиент температур никоим образом от этого не страдает. Стол консольный, поэтому желательно предусмотреть ребра жесткости или учесть это толщиной стола.

Отгиб металла на столе работает как ребро жесткости. Многие китайские клоны комплектуются такими вот ребрами жесткости для стола. 2) При всей кажущейся сложности кинематической схемы она проста и каждая ось перемещается с помощью своего же мотора.

3) Корпус закрытый, что защищает от сквозняков, и следовательно деламинации. Некоторые для пущего эффекта ставят акриловую дверцу.

Минусы кинематики:

1) Для хорошей печати мало купить пачку ровных валов. Собрать все эти валы правильно воедино та еще задачка. Заодно и купить хорошие подшипники. Не то, китайское барахло, что чаще втюхивают на али, а нормальные подшипники. Если подшипники, что ставят в корпус будут плохо вращаться — печать будет рывками и со сдвигом слоев. Последствия можно спросить у Вани (Plastmaska). Так же, покупая леопардовые втулки латунные подшипники с графитовыми вставками будьте готовы к тому, что они будут люфтить. А если будет люфт — вся конструкция будет стучать.

А так же, китаезы любят вместо бронзы впихивать латунь. А при равномерном износе латуни и графита на валах будет будет маслянистая липкая черная пленка, из-за чего перемещения будут происходить тяжелее. Хорошие втулки предлагает Илья ( tiger). Он же и писал про эти сложности. 2) Необходимо выставить правильно все параллели валов. Предлагаю воспользоваться таким девайсом. 4 вала, что идут вдоль стенок корпуса автоматически встают правильно, а вот крестовину важно выставить правильно, что бы получить углы 90 градусов в плоскости XY.

3) Конструкция не предусматривает увеличение области печати с помощью пары кусоков профиля, поэтому размеры хотенда имеют значение. Директ сложновато поставить, но можно при желании.

Калибровка стола проще некуда. Стол часто на 3 точках крепления. Перемещаем хотенд по 3 точкам и крутим барашки.

4. Кинематика, используемая фирмой Makerbot.

Так же, весьма широко распространена. В частности принтеры компании Makerbot, BQ, BCN3D ,Magnum, клон магнума — Zenit и вполне сносные реплики makerbot — Flashforge и Hori работают на данной кинематической схеме.

В данном случае мы имеем независимое движение каждой из осей, с Z столом и всеми вытекающими из этого сторонами.

Основной недостаток заключается в том, что на катающейся балке с одной стороны висит двигатель, создавая эдакий дисбаланс. Этот недостаток компенсировали в двухэкструдерном варианте — BCN3D Sigma. Там у каждой bowden-головы для перемещения вдоль балки есть свой двигатель. И они установлены по краям балки и уравновешивают друг друга. Для равномерного перемещения каждого из краев балки применяется 2 вала, шкивы и ремни. Ремни необходимо натягивать одинаково.

Достоинства кинематики:

1) Независимое перемещение каждой из осей.

2) Движущийся по Z стол. Градиент температур не страдает ‘сдуванием’.

3) Закрытый корпус. Если не закрытый, то есть вполне нормальный с точки зрения эстетики шанс закрыть его.

4) Масштабируемость кинематики возможна. Различные BigREP и иже с ними с метровыми областями печати используют именно эту кинематику, так как различные H-bot/CoreXY будут адово звенеть по причине наличия 4-5 метровых ремней и их растяжения во время ускорений.

Недостатки кинематики:

1) Неуравновешенные массы на движущейся балке, отсюда максимальная скорость печати, с приемлемым качеством не больше 60-80 мм/с. Некоторые умудряются их уравновесить и это не столь заметно.

2) Громоздкие конструкции на валах, дабы избежать дисбалланса при перемещениях.

3) Необходимо следить, чтобы натяжения ремней справа и слева были одинаковы.

4. Кинематика H-bot/CoreXY.

Следующая по распространению. Так же, Cartesian. Два мотора неподвижны, но перемещают каретку по направляющим с помощью одного длинного куска ремня, или с помощью двух, но покороче. Математика сложнее, чем у предыдущих, так как необходимо синхронизировать поворот обоих роторов двигателя. То есть, для перемещения вдоль каждой оси нужно вращать оба мотора, а для перемещения по диагонали — всего 1.

[IMG]http://www.doublejumpelectric.com/projects/core_xy/pics/hbot.svg[/IMG]

По сути математика для вращения моторов одна и та же, а реализация в механике разная. Один из самых больших недостатков H-bot перед CoreXY состоит в том, что при перемещениях ремень стремится повернуть балку.

На картинке слева это заметно, силы справа и силы слева создают крутящий момент. Поэтому для реализации этой кинематики необходима жесткость кинематической схемы. Чаще всего ее реализуют в рельсах. С жесткой балкой. Некоторые делают, конечно, на валах, но по итогу — это не фонтан. А потом понимают это и переезжают на рельсы. Ибо они и проще в сборке и настройке, и выдумывать каретки, что б хорошо валы закрепить не нужно.

CoreXY, в отличии от H-bot, приводится в движение при помощи двух ремней.

И так, для простоты понимания, опишу положительные и отрицательные стороны каждой вариации этой кинематики.

H-bot.

Достоинства:

1) Ремень необходим всего один, а схема предусматривает его работу без скручиваний.

2) Натягивать один ремень удобнее, чем 2, поэтому в этой схеме нужен всего один нормальный натяжитель.

Можно даже так.

Недостатки:

1) Ремень имеет свойство растягиваться со временем, а так как величина растяжения напрямую зависит от длины, то необходимо следить за его натяжением. Иначе получатся некрасивые волны на поверхности перед остановками.

При слабой натяжке ремня каретка будет иметь такой люфт.

2) Необходимо выставлять ролики строго перпендикулярно плоскости XY, так как при небольшом перекосе ролика ремень будет съедаться об буртики ролика. И мы получим такую вот бяку.

Проверено на своей шкуре и принтере ZAV. Поэтому всегда рекомендую нормально закреплять ролики, а не консольно, дабы избежать изгиба оси ролика от натяжки ремня.

3) Сложная математика, из-за чего на скоростях выше 100 мм/с могут быть проблемы с нехваткой ресурсов 8 битных плат.

CoreXY.

Достоинства:

1) Два коротких куска ремня. Их проще найти, чем один длинный.

2) Силы уравновешивают балку, а не стремятся ее повернуть, поэтому эту кинематику можно собирать и на валах.

Недостатки:

1) Есть схемы с перекручиванием ремней и перехода ремня с одного уровня на другой — для ремня это не очень приятно. Особенно, когда один ремень трется об другой. На видео этот момент есть.

:{}

2) Сложность нятяжки ремней. Их необходимо натягивать одинаково, иначе силы нятяжки будут стремиться повернуть каретку.

3) Сложность сборки и разработки. Необходимо выдержать вертикальность роликов, относительно горизонтальности площадки для установки моторов и рельс. Небольшой перекос роликов приведет к тому, что ремень будет стремиться съехать по ролику, а если будет упираться в буртик ролика, то будет скрипеть, если буртик большой, а если маленький — то будет пытаться на него заехать, как на фото из описания h-bot.

Общий недостаток кинематики — плохая масштабируемость. То есть ставить такую кинематику для области печати больше 300*300 весьма проблемно просто из-за удлинений ремня при печати. Для небольших принтеров с большой скоростью печати — одна из лучших кинематик.

5. Delta кинематика.

Кинематика основана на движениях дельта-робота.

Только вместо захватов устанавливается хотенд. Имеет свои проблемы с настройкой, но на печать можно залипать очень долго. Редко когда устанавливают директ-экструдеры, так как эффектор (площадка для установки хотенда) часто крепится на магнитах и необходимо максимально разгрузить его. Но для уменьшения длины трубки (а конкретнее, влияния длины трубки на качество печати за счет правильной настройки ретрактов ( вытягивания пластикового прутка назад с целью уменьшения его вытекания от расширения)) на качество печати, экструдер вешают на те же каретки, но на отдельных подвесах. За счет этого уменьшается длина bowden трубки и увеличивается качество печати. Достоинства:

1) Легко кастомизируется. Для увеличения высоты достаточно прикупить 3 куска профиля подлиннее, и увеличить максимальную высоту в настройках.

2) Занимает мало места. Она чаще высокая, чем громоздкая по длине и ширине, за счет этого компактность.

3) Если сделать легкий эффектор ( каретка, на которой установлен хотенд), то можно добиться больших скоростей без потери качества печати.

4) Перемещение по высоте не отличается от перемещения по XY. Таким образом, нет залипания линейных подшипников на переездах стола, как у Cartesian принтеров, лишних двигателей, катающихся на балке…

5) Отсутствие выступающих частей дает возможность закрыть корпус и придать раме жесткости.

6) Эстетическая часть — на работу дельты интереснее залипать.

Недостатки:

1) Сложная математика перемещений, рекомендуется ставить сразу 32-битные платы.

2) Сложная настройка. Частая проблема в настройке — убрать так называемую ‘линзу’, ведь каждый стержень вращается с радиусом, и при некорректной настройке у вас печатаемая плоскость будет либо выпуклой,либо вогнутой линзой.

3) Сложно и дорого сделать жесткую раму, что бы ее не болтало от постоянных дрыганий кареток.

4) Сложность установки директ-экструдера. Он получается тяжелым, а так как многие дельты делаются на магнитах, то не будет возможности разогнаться. Хотя, есть одно аккуратное и легкое решение — установка готового директ-экструдера с редуктором. Как, например E3D Titan Aero или Bondtech BMG.

5) Проблемы точности изготовления деталей — любые неровности и несоосности будут видны, даже если они на одной оси. И они складываются по осям. Резюмируя, хотите небольшой принтер (не больше 300*300 мм) с шустрой кинематикой? Тогда вам к Ultimaker или H-bot/CoreXY. Нужен принтер с большой областью печати или с 2 независимыми экструдерами? Тогда к Makerbot. Если печатать вазочки, кальяны и достаточно высокие детали — дельта. Для всего остального есть классика — Prusa. Эксперименты с двойными каретками, шоколадом, гравировками? Да все что угодно. И самое главное — дешево.

Можно даже 4 цвета прикрутить.

Самодельная рама для 3D принтера. Какую модель выбрать? Чертежи

При разработке своих проектов на Arduino и ЧПУ. Я часто упираюсь в то, что на своем самодельном фрезерном станк е я могу сделать только плоские заготовки. А так часто необходимо сделать изогнутую стенку или сложную объемную деталь. Меня регулярно посещает мысль, что нужен 3D-пинтер. Стоят они не очень дорого. Это вам не Перевезти оргтехнику 20т фурой

В Китае можно купить недорогие 3D принтеры:

3D принтер с доставкой из России: Анет A6 3D-принтер

Но как вы знаете я не ищу легких путей и люблю собирать самодельные станки с ЧПУ. Поэтому я решил собрать 3D принтер.

И так цель ясна. Теперь нужно поэтапно реализовывать задуманное. Первое что нужно будет сделать это рама (корпус) 3D принтера, на который будет крепиться вся механика и электроника.

Можно купить готовые варианты рамы , цена относительно небольшая:

Но раз я решил самодельны, значит самодельный. Сперва я планировал собрать самый простой 3D-принтер и выпилить основные части корпуса из фанеры вручную. Что то примерно вот такое:

самый простой 3D-принтер

Но посмотрев размеры раскроя, понял что основные заготовки можно будет вырезать на моем самодельном фрезерном станке с ЧПУ. Чертить с нуля достаточно долго и я загуглил вот что нашел.

1. Первая развертка предназначена для вырезки из стали 3 мм.

3d принтер. Чертеж рамы

Есть несколько версий данного принтера. Выбрать есть из чего. Можно сходить на завод и заказать раскрой из стали или алюминия. Но это выходит в круглую копеечку. На экспрессия можно купить горазда дешевле из альтернативного материала. Конечно из стали получиться достаточно жестко и на века.

Скачать чертежи 3D-принтера P3Steel

2. Вторая версия имеет те же минусы и недостатки. Но макет сделан из МДФ. Поэтому я решил сделать так же из МДФ. Для примера. А потом на основании данного макета модернизировать чертежи под свои материалы. И почестям пересобрать. И тут я нашел третий вариант.

Самодельная рама из МДФ 3D принтера

раскрой фанеры рамы 3D принтера

Скачать чертежи 3D-принтера I3 CORDOBESA Full Steel

3.Данная версия рамы 3D принтера уже предназначена для раскроя из фанеры 6 мм.

версия рамы 3D принтера уже предназначена для раскроя из фанеры 6 мм

Это то что я искал. Для первой пробной рамы для 3D-принтера, я думаю будет достаточно. Тем более зная себя точно, что нибудь буду переделывать и модернизировать. А как основная база на первый взгляд неплохой вариант. А как вы считаете?

Скачать чертежи 3D-принтера WoodMAX i3

Если у вас есть варианты рам для 3D принтера пишите в комментарии. Буду благодарен!

Подписывайтесь на мой канал на Youtube и вступайте в группы в Вконтакте и Facebook.

Спасибо за внимание!

Понравилась статья? Поделитесь ею с друзьями:

Самодельный 3д принтер v3.0

Представляю вашему вниманию самодельный 3д принтер. Собран из фанеры, алюминия, пластика и Ардуино. Этот принтер уникален тем, что его кинематика подсмотрена у Ultimaker, но сделана с качественными доработками.

Самодельный 3д принтер v3.0

Это уже третий мой 3д принтер, сделанный своими руками. Первый был H-bot, второй D-bot.
С тех пор, когда узнал о 3д печати, я хотел сделать свой принтер, но не особо понимал зачем он мне нужен. Первую деталь я купил ещё в 2015 году, с мыслями о том, что может когда-нибудь я сделаю принтер. За три года незаметно накопилось деталей на cборку и в декабре 2017 я начал процесс. Первая печать произошла только в конце февраля 2018 года. С тех пор я заболел 3д-печатью.

Самодельный 3д принтер v3.0

Первый принтер был первым блином, т.е. комом. Это был хороший старт, я приобрёл бесценный опыт и напечатал детали для второго принтера. Второй принтер получился лучше, но всё равно не устраивал меня своими недостатками кинематики.

Самодельный 3д принтер v3.0

С самого начала я не ставил себе задачу сделать 3д принтер для ежедневной печати или печати на заказ. Цель: печатать изделия из пластика для собственных нужд. Хочется, конечно, чтобы качество печати было максимальным и при этом цена принтера не должна зашкаливать. Рельсовые направляющие сразу были исключены из сметы из-за цены и сложностей покупки, к тому же они шумные. Круглые линейные подшипники типа LM8UU со временем сгрызают направляющие, поэтому после долгих поисков& выбор пал на 10-ти миллиметровые стальные валы и напечатанные втулки из ABS-пластика.

Самодельный 3д принтер v3.0

Я очень давно хотел научиться моделировать свои самоделки в 3D, всё стимула не хватало. Первый принтер я пытался строить в AutoCAD. Уже после нескольких первых распечатанных деталек из пластика, я понял что надо что-то другое. Так я получил пинок изучить SolidWorks. В нём и разрабатывал все последующие модели. Меня очень вдохновила эта программа, потому как чертить очень люблю!

Самодельный 3д принтер v3.0

Принтер сначала моделировал на компьютере в 3D с учётом всех деталей. Создание виртуальной модели здорово помогает разработке, многие узлы оптимизируются ещё до их реального воплощения.

Учитывая первый опыт постройки корпуса принтера из ЛДСП, в данной версии я использовал фанеру 10 мм. Все детали были вырезаны на самодельном ЧПУ станке и покрашены белой автомобильной краской.

Пожалуй, самое интересное в этом принтере — кинематика. Я долго присматривался к Ультимейкеру. Подкупало то, что у него оси двигаются жёстко, без перекосов. Позже я узнал и о недостатках. Заключаются они в радиальном вращении направляющих, по которым также двигаются втулки. Залогом качественной печати с таким исполнением кинематики являются дорогие и качественные комплектующие. Меня это не устраивало. Мой принтер должен быть из дешевых и легкодоступных материалов. Вообще самому строить 3д принтер сложно, когда практически все детали приходится заказывать издалека.

При разработке 3д модели нового принтера я разделил вращающиеся и направляющие валы. Так линейное перемещение по осям осуществляется по неподвижным валам 10 мм. Ременная передача организована на отдельных валах диаметром 8 мм. Узлы крепления ремней на подвижных частях сделаны в одной плоскости перемещения осей, чтобы не создавать лишних рычагов, которые, кстати, способствуют износу втулок.

Самодельный 3д принтер v3.0

Я поставил задачу иметь возможность быстрой замены любых частей кинематики без необходимости разбирать половину принтера. Также все 4 мотора и электроника принтера вынесены в заднюю часть принтера, чтобы иметь возможность сделать термокамеру для 3д печати и не греть при этом то, что должно быть холодным.

Ось Z сделал из мебельных труб 16 мм и распечатанных из пластика пластин для скольжения. Двигается стол по оси с помощью обычной резьбовой шпильки М8 и муфты. Вращение от мотора передаётся на шпильку через ременную передачу.

Самодельный 3д принтер v3.0

Подогреваемый стол состоит из двух частей. Основание из фанеры, оно движется по оси Z. На основание крепится на четырёх винтах М4 и пружинах алюминиевая рамка. В рамку уложен силиконовый коврик, нагреватель и боросиликатное стекло.

Самодельный 3д принтер v3.0

Самодельный 3д принтер v3.0

Много времени и сил заняла разработка движущейся/печатающей головки, её охлаждение и обдув детали. Пришлось долго вымерять детали, чтобы нигде ничего не задевало во время движения. Для охлаждения я использовал кулеры 40*10 мм. Они работают тихо на низких оборотах и дают хороший поток воздуха. Электроника прикручена на задней стенке. Там же стоит кулер для охлаждения драйверов моторов. Кулер для охлаждения экструдера и кулер для электроники запитаны последовательно и работают в половину мощности, поэтому шум от них очень низкий. Вся электроника запитана от блока питания 12 вольт 25 ампер. Концевики все механические, работают на размыкание.

Самодельный 3д принтер v3.0

Термоблок хотэнда я залил термостойким силиконом. Хорошо ли это работает сказать не могу, но что спасает пальцы от ожогов это точно. Никаких других доработок с хотэндом я пока не проводил, всё стандартное.

Самодельный 3д принтер v3.0

Подогрев стола осуществляется самодельным нагревателем из текстолита, дорожки просто процарапал резцом под линейку, замучился, лучше бы вытравил. По опыту на каждые 10*10 см стола должно тратиться 2.5 ампера, тогда стол нагревается до 100 градусов очень быстро. Включение нагревателя осуществляется через обычное электромагнитное реле.

Самодельный 3д принтер v3.0

На текущий момент 3д принтер не имеет законченного вида, всё на этапе сборки и тестирования. Уже много идей как можно улучшить то, что есть. В целом я очень доволен кинематикой, расположением элементов, корпусом, внешним видом и удобством.

О недостатках и недоработках.

В качестве направляющих должны быть использованы стальные валы. У меня их не было, поэтому попробовал поставить алюминиевые трубки. Первая печать показала, что длинные направляющие гнутся из-за трения втулок и недостаточной жесткости алюминиевых трубок. Замена двух длинных направляющих на сталь немного улучшила ситуацию, но осталась ещё центральная направляющая. Она пока не заменена.

В качестве 8-ми миллиметровых валов для ремней планировал использовать алюминиевые трубки. Они раньше были в продаже, потом пропали. Пришлось использовать шпильки с резьбой, а это дало биение на шкивах, которое передаётся на ремень и, соответственно, влияет на качество печати.

Самодельный 3д принтер v3.0

Втулки на движущейся головке я попробовал бронзовые самосмазывающиеся. Пока особо нечего сказать про эти втулки, на принтере всего пару моделек отпечатал. Покупал 10 штук втулок, 4 из них были с люфтом. Я так думаю, что эти втулки предназначены для радиального вращения, вряд ли они годятся для линейного перемещения.

Самодельный 3д принтер v3.0

Сейчас принтер печатает плохо, это на 100% зависит от втулок и направляющих, а также от шпильки с метрической резьбой на оси Z. Есть идеи как довести геометрию печати до идеала, но об этом я буду расскажу, когда всё попробую на практике.

Ещё не получилось сделать кинематику быстроразбираемой. В следующей модификации это учту. Поставить моторы на демпферы, чтобы уменьшить шум. Не очень красиво мне удалось сделать разводку с проводами. Не нравится мне длинная трубка от экструдера к хотэнду и не нравится, что она торчит из принтера, сверху планировалась крышка из стекла. Спереди принтер будет закрываться стеклянной дверцей, пока её тоже нет. Сзади электроника будет закрываться пластиковой крышкой с прорезями для движения воздуха.

Самодельный 3д принтер v3.0

На передней панели справа четыре выключателя: сеть, свет общий, свет возле хотэнда, отключение обдува детали. Под столом расположена панель с отверстиями для светодиодов и выключателей, это ноухау для отключения неиспользуемых во время печати участков подогрева. Планируется сделать подогрев из нескольких отключаемых нагревателей, это здорово экономит электроэнергию.

Рабочий стол я сделал размером 31*22 см и планировал положить зеркало. Решил попробовать боросиликатное стекло, размер стекла заказал меньший 200*213 мм, поэтому по бокам стола получились пустые места. Печатать на боросиликатном столе без клея не получилось. Пластик совсем не хотел прилипать к этому стеклу, поэтому скорее всего вернусь к использованию зеркала.

Самодельный 3д принтер v3.0

Изначально думал, что по бокам корпуса будут окна со стеклянными дверцами. У первого корпуса из ЛДСП были эти окна, но т.к. принтер стоит между стеной и столом, толку от окошек нет. Поэтому стенки остались целыми, внутри на этих стенках будет крепление для катушки с пластиком.

Кто-то заметил, тут нет экрана с элементами управления. Поставить экран можно. Я сознательно отказался от него, т.к. просто управляю с компьютера. Необходимости печатать с флешки у меня не было и вряд ли предвидится.

На этом пока всё. А чём умолчал, отвечу в комментариях. Принтер пока отпечатал всего пару котиков на скорости 100 мм/сек. Дочь котикам несказанно рада, значит работа проделана на пользу. Есть целый список из нескольких десятков моделей, которые очень хочется распечатать в хорошем качестве. Впереди много интересных доработок, будет интересно. Всем добра!

Самодельный 3д принтер v3.0

Самодельный 3д принтер v3.0

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *