Модель днк своими руками: как из ДНК делают интересные штуки нанометрового размера / Habr – Получение ДНК в домашних условиях

  • Home
  • Рукам
  • Модель днк своими руками: как из ДНК делают интересные штуки нанометрового размера / Habr – Получение ДНК в домашних условиях

Содержание

как из ДНК делают интересные штуки нанометрового размера / Habr

Недавно я обнаружил весьма печальный факт: на Хабре совершенно не освещена такая забавная тема, как ДНК-оригами. Есть только один пост 2009 года, рассказывающий лишь самое начало занимательной истории о том, как из ДНК (да-да, той самой дезоксирибонуклеиновой кислоты, несущей нашу генетическую информацию) можно создавать всякие хитрые, плоские и трехмерные штуки нанометрового размера. Та самая нано-технология, как она есть. В этом обзоре я хочу рассказать о развитии ДНК-оригами: двухмерные смайлики из ДНК, трехмерные фигуры, кристаллы из ДНК с запрограммированной структурой, ДНК-«коробочки» с крышкой, способные нести молекулы нужных веществ и выпускать их после сигнала об открытии крышки, и, наконец, динамические структуры типа ДНК-шагохода (walker), гуляющего по подложке (создатели гордо говорят, что это уже наноробот!). Кто хочет узнать больше о том, зачем все это нужно, почитать о технологиях изготовления красивых нанометровых штук из ДНК или просто посмотреть красивые картинки, добро пожаловать под кат.


Так выглядит ДНК-наноробот

Немного теории

В конце двадцатого — начале двадцать первого века встал вопрос о конструировании объектов нанометрового размера. Для чего? Общий вектор на миниатюризацию существует достаточно давно, причем исторически это всегда было движение «сверху вниз» — например, в 70-х годах при изготовлении микросхем минимальный контролируемый размер составлял 2-8 мкм, далее это значение стремительно уменьшалось и сейчас в серийном производстве находятся чипы, выполненные по 22-нм технологическому процессу. Тут у думающих людей возник вопрос: а нельзя ли двигаться «снизу вверх»? Нельзя ли заставить атомы и молекулы собираться в нужные структуры и затем эти структуры использовать в технике? Очевидны требования к такой «самособирающейся» системе: материалы для нее должны быть достаточно дешевыми и доступными, самосборка сложной пространственной структуры системы должна легко и очевидно «программироваться», система должна быть способна нести полезный функционал. Тут же вспомнили, что в природе такие самособирающиеся системы уже существуют и прекрасно работают — это макромолекулы всех живых организмов, например, белки. Здесь приходит и первое разочаровние — белки слишком сложно устроены, их трехмерная структура задается совершенно неочевидным образом множеством нековалентных взаимодействий и получить белок с произвольной структурой — до сих пор абсолютно нетривиальная и нерешаемая задача. То есть использовать белки для конструирования нужных объектов нано-размеров технически невозможно. Что же делать? Оказывается, есть и другие макромолекулы, чья структура устроена гораздо проще структуры белков.

В 1953 году Уотсон и Крик опубликовали свою модель структуры ДНК, оказавшейся абсолютно верной. ДНК (дезоксирибонуклеиновая кислота) — это интересно устроенный линейный полимер. Одна нить ДНК состоит из монотонно повторяющегося сахаро-фосфатного остова (он асимметричен и имеет направление, различают 5′ и 3′ конец цепи), однако к каждому сахару (дезоксирибозе в случае ДНК) прикреплен один из четырех нуклеотидов (синоним слова нуклеотид — «основание») — аденин, либо тимин, либо цитозин, либо гуанин. Обычно их обозначают одной буквой — А, Т, Ц, Г. Таким образом, в ДНК есть только 4 типа мономеров, в отличие от 20 аминокислот в составе белка, что делает структуру ДНК намного проще. Дальше становится еще веселей — есть так называемое «Уотсон-Криковское спаривание оснований»: аденин может специфично связываться с тимином, а гуанин — с цитозином, образуя пары А-Т и Г-Ц (и еще Т-А и Ц-Г, разумеется), другие взаимодействий между нуклеотидами в упрощенном случае можно считать невозможными (они возможны в виде исключения при некоторых редких условиях, но для нас это не важно). Уотсон-Криковское спаривание оснований еще называется комплементарностью.

Две цепи ДНК, последовательность оснований которых комплементарна, немедленно «слипаются» в двойную спираль.Возникает вопрос: а что, если на одной цепи ДНК находятся две комплементарные области? Ответ: цепь ДНК может согнуться и комплементарные области смогут образовать двойную спираль, а вместе с местом изгиба эта структура будет называться «шпилькой» (DNA hairpin):

На чем же основано «слипание» двух комплементарных цепей ДНК (или, аналогично, двух комплементарных участков одной цепи)? Это взаимодействие держится на водородных связях. Пара А-Т соединяется двумя водородными связями, пара Г-Ц — тремя, поэтому эта пара более энергетически устойчива. Про водородные связи надо понимать следующее: энергия одной водородной связи (5 ккал/моль) не намного превосходит энергию теплового движения, а значит, одна отдельно взятая водородная связь может быть с высокой вероятностью тепловым движением разрушена. Однако, чем больше водородных связей, тем более устойчивой становится система. Это значит, что короткие участки комплементарных оснований ДНК не могут образовать устойчивую двойную спираль, она будет легко «плавиться», однако более длинные комплементарные участки уже смогут образовать стабильные структуры. Стабильность двухцепочечной структуры выражается одним параметром — температурой плавления (Тм, melting temperature). По определению, температура плавления — это температура, при которой в равновесии 50% молекул ДНК с данной длиной и последовательностью нуклеотидов находятся в двухцепочечном состоянии, а другие 50% — в расплавленном одноцепочечном состоянии. Очевидно, что температура плавления напрямую зависит от длины комплементарной области (чем длиннее — тем выше температура плавления) и от нуклеотидного состава (так как в паре Г-Ц три водородные связи, а в паре А-Т — две, то чем больше пар Г-Ц, тем выше температура плавления). Температура плавления для данной последовательности ДНК легко считается по эмпирически выведенной формуле.

От теории к практике

Итак, теорию мы изучили. Что же мы можем сделать на практике? С помощью химического синтеза мы можем напрямую синтезировать цепи ДНК длиной до 120 нуклеотидов (просто потом выход продукта резко падает). Если же нам нужна более длинная цепь, то ее без проблем можно собрать из тех самых химически синтезированных фрагментов длиной до 120 нуклеотидов (например, дядюшка Крейг Вентер отличился тем, что из кусочков собрал ДНК длиной аж 1,08 миллиона пар оснований). То есть в 21 веке мы можем легко и дешево делать ДНК любой последовательности, какой только захотим. А хотим мы, чтобы потом ДНК сворачивалась во всякие хитрые и сложные структуры, которые мы потом сможем использовать. Для этого у нас есть принцип комплементарности — как только в последовательности ДНК появляются комплементарные зоны, они слипаются и образуют двухцепочечный участок. Очевидно, мы хотим делать структуры, стабильные при комнатной температуре, значит мы хотим рассчитать температуру плавления для данных участков и сделать ее достаточно большой. При этом на одной цепи ДНК мы можем делать много разных областей с разными последовательностями и слипаться будут только комплементарные. Так как комплементарных областей может быть несколько, в результате молекула может свернуться достаточно сложным образом! Как-то так, например:

Так же, помимо положительного дизайна (создание областей, способных образовывать нужную нам структуру), при разработке структур с самосборкой нельзя забывать и о негативном дизайне — нужно проверять получившуюся последовательность ДНК на потенциальное наличие паразитных взаимодействий (когда части созданных нами областей оказываются способными взаимодейстовать по-другому, образуя ненужные нам паразитные структуры) и от этих паразитных структур и взаимодействий избавляться, меняя нуклеотидную последовательность ДНК. Как получить простейшие структуры ДНК типа «шпильки» достаточно очевидно, но скучно и неинтересно. Можно ли из ДНК сделать что-то посложнее? Здесь уже без компьютерных вычислений не обойтись. Мы хотим некую структуру и теперь должны подобрать последовательность ДНК, которая в эту структуру свернется за счет взаимодействия комплементарных областей, но при этом в последовательности не должно быть паразитных взаимодействий, непредусмотренных нами комплементарных областей, образующих альтернативные структуры. Плюс структура должна отвечать другим критериям, например, иметь температуру плавления выше некоторой заданной величины. В результате имеем типичную оптимизационную задачу.

Двухмерные структуры из ДНК

Методологический прорыв устроил Paul Rothemund (Калифорнийский Технологический Институт) в 2006 году, именно он и придумал термин «ДНК-оригами». В своей статье в «Nature» он представил множество забавных двухмерных объектов, сделанных из ДНК. Принцип, предложенный им, достаточно прост: взять длинную (примерно 7000 нуклеотидов )«опорную» одноцепочечную молекулу ДНК и затем с помощью сотни коротких ДНК-скрепок, образующих двухцепочечные области с опорной молекулой, согнуть опорную ДНК в нужную нам двухмерную структуру. Вот рисунок из оригинальной статьи, представляющий все стадии разработки. Для начала (а) нарисуем нужную нам форму красным цветом и прикинем, как заполнить ее ДНК (представим ее на этом этапе в виде труб). Далее (b) представим, как провести одну длинную опорную молекулу по нужной нам форме (показана черной линией). На третьем этапе (с) подумаем, где мы хотим разместить «скрепки», стабилизирующие укладку длинной опорной цепи. Четвертый этап (d): больше деталей, прикидываем, как будет выглядеть вся нужная нам структура ДНК и, наконец, (e) мы имеем схему нужной нам структуры, можно заказывать ДНК нужной последовательности!

Как же из химически синтезированных ДНК собрать нужную нам структуру? Здесь на помощь приходит процесс плавления. Мы берем пробирку с водным раствором, бросаем в нее все фрагменты ДНК и нагреваем до 94-98С, температуры, которая гарантировано плавит всю ДНК (переводит ее в одноцепочечную форму). Далее мы просто очень медленно (в течении многих часов, в некоторых работах — в течении нескольких дней) охлаждаем пробирку до комнатной температуры (эта процедура называется «отжиг», annealing). При этом медленном охлаждении, когда температура оказывается достаточно низкой, постепенно образуются нужные нам двухцепочечные структуры. В оригинальной работе в каждом эксперименте примерно 70% молекул успешно собирались в нужную структуру, остальные имели дефекты.

Далее, после того, как структура рассчитана, неплохо бы доказать, что она собирается именно так, как нам надо. Для этого чаще всего используют атомно-силовую микроскопию, которая как раз прекрасно показывает общую форму молекул, но иногда используют и cryo-EM (электронную микроскопию). Автор сделал множество веселых форм из ДНК, на картинках представлены расчетные структуры и результат экспериментального определения структур с помощью атомно-силовой микроскопии. Наслаждайтесь!


Трехмерные структуры из ДНК

После того, как разобрались с конструированием сложных плоских объектов, почему бы не перейти к третьему измерению? Здесь пионерами была группа ребят из Института Скриппса в Ла-Холле, Калифорния, которые в 2004 году придумали, как из ДНК сделать нано-октаэдр. Хотя эта работа и сделана на 2 года раньше плоского ДНК-оригами, в тот раз был решен лишь частный случай (получение октаэдра из ДНК), а в работе по ДНК-оригами было предложено общее решение, поэтому именно работа 2006 года по ДНК-оригами считается основополагающей.

Октаэдр был сделан из одноцепочечной молекулы ДНК длиной примерно 1700 нуклеотидов, имеющей комплементарные области и к тому же скрепленой пятью 40-нуклеотидными ДНК-адаптерами, в результате был получен октаэдр с диаметром 22 нанометра.
На рисунке обратите внимание на цветовую кодировку на двухмерной развертке октаэдра. Видите области, отмеченные одинаковым цветом? Они содержат как комплементарные зоны (параллельные участки соединенные поперечными связями), так и некомплементарные (на схеме они изображены в виде пузырьков), при этом зоны одного цвета, расположенные в разных частях двухмерной развертки, взаимодействуют друг с другом, образуя сложную структуру, изображенную на рисунке 1с и образующую грань трехмерного тетраэдра. Наслаждайтесь красивыми картинками!


В 2009 году ученые из Бостона и Гарвардского Университета опубликовали принципы построения трехмерного ДНК-оригами, как они сами говорят, по подобию пчелиных сот. Одно из достижений этой работы — люди написали open-source программу caDNAno для конструирования трехмерных структур ДНК (она работает на Autodesk Maya). С этой программой даже неспециалист может собрать нужную структуру из готовых блоков с использованием простенького графического интерфейса, а программа рассчитает необходимую последовательность (или последовательности) ДНК, в эту структуру сворачивающуюся.



В следующей своей работе они научились делать из ДНК сложные трехмерные объекты с контролируемым искривлением и порадовали читателей журнала «Science» красивыми картинками разных искривленных объектов из ДНК (там такие классные шестеренки получились!).



Периодические структуры

До сих пор ученые игрались с непериодическими структурами из ДНК. А что если сделать такую структуру, чтобы один блок мог взаимодействовать с другим таким же блоком, и так до бесконечности? Представьте себе три отрезка, расположенных под углом 90 градусов друг к другу (походит на противотанковый еж). Очевидно, что такая структура может быть узлом бесконечной кубической решетки, если каждая сторона такого ежа будет взаимодействовать с другим таким ежом. Именно эту идею в 2010 году воплотили на практике ученые из Нью-Йорка, они сделали такого ДНК-ежа, который немедленно сформировал трехмерную решетку, то есть кристалл из ДНК, так что они использовали рентгеноструктурный анализ, чтобы показать, что ДНК образовали именно такую структуру, какую они и хотели. В свою очередь, так как кристаллы ДНК имели размер до пол-миллиметра (а это уже макро-объект), было гордо заявлено, что теперь из нано-объектов мы умеем собирать макро-объекты.

Вот стерео-картинка узла решетки, если умеете правильно скашивать глаза (это прямая стереопара), можете посмотреть в 3D (на нижней картинке с электронной плотностью ДНК четко видны два узла-«противотанковых ежа»):

Динамические структуры

Следующий шаг в конструировании трехмерных нано-объектов так же очевиден — а что если заставить это все как-то двигаться? Движущийся объект уже можно и нано-роботом назвать. Самый простенький ДНК-шагоход был сделан в 2008 году командой из Калифорнийского Технологического института. Работает он по достаточно простому принципу. Представьте себе одноцепочечную ДНК длиной, скажем, 100 нуклеотидов. Представьте другую одноцепочечную ДНК, короткую, длиной 50 нуклеотидов, комплементарную половине первой молекулы. Что будет, если их смешать? Правильно, они образуют двухцепочечную структуру в районе этих 50 нуклеотидов, вторая же половина первой молекулы останется свободной. А что если к этой структуре добавить еще одну молекулу ДНК, длиной 100 нуклеотидов и полностью комплементарной первой молекуле? Ответ вполне очевиден: она вытеснит короткую цепь длиной 50 нуклеотидов, так как обладает большим сродством к первой молекуле (у них сродство 100 из 100, а с короткой — только 50 из 100 нуклеотидов). Именно так и работал первый ДНК-шагоход. На подложке закреплены молекулы одноцепочечной ДНК, к ним из раствора приходит молекула-шагоход, имеющая комплементарные зоны к двум соседним цепям на подложке и связывается с ними. Если потом мы добавим в раствор другую ДНК, имеющую большее сродство к первой цепи на подложке, то она вытеснит одну ногу шагохода, после чего эта нога свяжется со следующей (третьей) цепью ДНК на подложке. Добавляя новые вытесняющие ДНК можно гнать шагоход все дальше и дальше по подложке. Обратный ход невозможен, так как предыдущие цепи на подложке уже инактивированы связыванием с более длинной молекулой ДНК.

Хотя первый шагоход выглядел настолько примитивно, конструкция была доработана учеными из Нью-Йорка. Они сделали более сложный шагоход с несколькими «руками» и «ногами», прицепили при помощи комплементарных ДНК на подложку «груз» (золотые частицы диаметром 5 и 10 нм) и «запрограммировали» шагоход таким образом, чтобы он прошел по подложке и собрал груз — три маленькие и одну большую золотые частицы. Последовательность шагов легко отследить по стрелочкам, а на экспериментальной картинке справа видны частицы золота и как шагоход их собирает. Нано-робот в действии! На нижней картинке показано, как именно происходит процесс «шагания» и сбора груза, принцип — тот же самый, вытеснение одной ДНК другой.


Но это еще не все. Венцом ДНК-робототехники (думаю, тут в моем голосе слышим некоторый сарказм) стал «наноробот для молекулярного транспорта», как окрестили его создатели из Бостона. Фактически ребята сделали некую «коробочку» из ДНК, закрывающуюся на «замок» из ДНК, который может быть открыт по уже известному нам принципу вытеснения одной ДНК другой, как в шагоходах. Внутри коробочки спрятан груз — частицы золота либо молекулы иммуноглобулина. ДНК можно химически модифицировать таким образом, чтобы на ней можно было закрепить этот самый груз. Итак, мы имеем закрытую коробочку, содержимое коробочки надежно спрятано. Тут мы добавляем молекулу, открывающую коробочку, она открывается и иммуноглобулин, спрятанный внутри, выходит наружу и начинает действовать! Мы же хлопаем в ладоши, умиляемся и радуемся прогрессу.

Ребята даже не поленились сделать демонстрацию proof of principle на живых раковых клетках: они прятали в коробочку антитела, блокирующие ключевые белки клеточного цикла, вводили коробочки в раковые клетки и после добавления открывающего коробочку активатора раковые клетки правда переставали делиться! Таким образом была показана принципиальная возможность использования таких конструкций для направленной доставки лекарств в организме и их выделения в нужное время по сигналу от молекулы-активатора. Одна осталась проблема, как раковую клетку от здоровой надежно отличить…

Для чего козе баян?

Все это, конечно, здорово и хорошо, картинки красивые, но внимательный читатель может спросить: «А где обещанная в самом начале польза для народного хозяйства?». Как и со всякой новой технологией, пока большой практической пользы действительно нет, помимо эстетического удовольствия от созерцания этой нано-красоты. Однако, все только начинается! Во-первых, ДНК может быть химически модифицирована, к ней могут быть добавлены химические группы, обеспечивающие связывание с другими молекулами и тогда ДНК можно использовать как подложку для построения сложных структур из других молекул. Например, сейчас все хотят что-то мастерить из нанотрубок. Если удастся сделать адаптер, связывающийся одним концом с ДНК, а другим — с нанотрубкой, тогда структуры из ДНК можно использовать для соединения нанотрубок. С другой стороны, уже есть сообщения о контролируемой металлизации ДНК, а отсюда уже рукой подать до конструирования электронных устройств на базе структур из металлизированной ДНК. Может быть, ученые изобретут более подходящий полимер, обеспечивающий более удобную самосборку сложных структур, но в любом случае ДНК-оригами займет свое место в истории науки, как один из первых примеров конструирования сложных объектов в нано-масштабе. Как бы то ни было, нас ждет большое и светлое будущее, чего и вам желаю!

PS: интересное дополнение от vxsw:
«Уже пару лет проводится конкурс BIOMOD по дизайну таких штук при поддержке Wyss Institute (замеченного во многих интересных биотехнологических достижениях вроде недавней 3D-печати мини-аккумуляторов).»

PPS: в личке спросили, почему ДНК, а не РНК. Ответ такой: я вижу две основные причины: (1) ДНК — химически более стабильна. Все живые организмы синтезируют огромное количества РНКаз, ферментов, уничтожающих РНК. Если Вы случайно залезете голым пальцем в пробирку с РНК, от РНК ничего не останется — все сожрут РНКазы. Поэтому с РНК работают в специальных помещениях и тд — мороки гораздо больше, чем при работе с ДНК. С ДНК таких проблем нет, палец в пробирку сунешь — ничего ДНК не будет. (2) Стоимость химического синтеза РНК в разы превышает стоимость синтеза ДНК. Думаю, поэтому народ и развлекается с ДНК — дешевле и проще.

ДНК-оригами: как из ДНК делают интересные штуки нанометрового размера

В статье описываются основные технологические принципы создания из ДНК (да-да, той самой дезоксирибонуклеиновой кислоты, несущей нашу генетическую информацию) всяких «хитрых, плоских и трехмерных штуковин» нанометрового размера – ДНК-оригами. Фактически – это та самая нано-технология, как она есть.

В этом обзоре я хочу рассказать о развитии ДНК-оригами: двухмерные смайлики из ДНК, трехмерные фигуры, кристаллы из ДНК с запрограммированной структурой, ДНК-«коробочки» с крышкой, способные нести молекулы нужных веществ и выпускать их после сигнала об открытии крышки, и, наконец, динамические структуры типа ДНК-шагохода (walker), гуляющего по подложке (создатели гордо говорят, что это уже наноробот!). Статья для тех, кто хочет узнать больше о том, зачем все это нужно, почитать о технологиях изготовления красивых нанометровых штук из ДНК или просто посмотреть красивые картинки.

Так выглядит ДНК-наноробот

Немного теории

В конце двадцатого — начале двадцать первого века встал вопрос о конструировании объектов нанометрового размера. Для чего? Общий вектор на миниатюризацию существует достаточно давно, причем исторически это всегда было движение «сверху вниз» — например, в 70-х годах при изготовлении микросхем минимальный контролируемый размер составлял 2–8 мкм, далее это значение стремительно уменьшалось и сейчас в серийном производстве находятся чипы, выполненные по 22-нм технологическому процессу. Тут у думающих людей возник вопрос: а нельзя ли двигаться «снизу вверх»? Нельзя ли заставить атомы и молекулы собираться в нужные структуры и затем эти структуры использовать в технике? Очевидны требования к такой «самособирающейся» системе: материалы для нее должны быть достаточно дешевыми и доступными, самосборка сложной пространственной структуры системы должна легко и очевидно «программироваться», система должна быть способна нести полезный функционал. Тут же вспомнили, что в природе такие самособирающиеся системы уже существуют и прекрасно работают — это макромолекулы всех живых организмов, например, белки. Здесь приходит и первое разочаровние — белки слишком сложно устроены, их трехмерная структура задается совершенно неочевидным образом множеством нековалентных взаимодействий и получить белок с произвольной структурой — до сих пор абсолютно нетривиальная и нерешаемая задача. То есть использовать белки для конструирования нужных объектов нано-размеров технически невозможно. Что же делать? Оказывается, есть и другие макромолекулы, чья структура устроена гораздо проще структуры белков.

В 1953 году Уотсон и Крик опубликовали свою модель структуры ДНК , оказавшейся абсолютно верной. ДНК (дезоксирибонуклеиновая кислота) — это интересно устроенный линейный полимер. Одна нить ДНК состоит из монотонно повторяющегося сахаро-фосфатного остова (он асимметричен и имеет направление, различают 5′ и 3′ конец цепи), однако к каждому сахару (дезоксирибозе в случае ДНК) прикреплен один из четырех нуклеотидов (синоним слова нуклеотид — «основание») — аденин, либо тимин, либо цитозин, либо гуанин. Обычно их обозначают одной буквой — А, Т, Ц, Г. Таким образом, в ДНК есть только 4 типа мономеров, в отличие от 20 аминокислот в составе белка, что делает структуру ДНК намного проще. Дальше становится еще веселей — есть так называемое «Уотсон-Криковское спаривание оснований»: аденин может специфично связываться с тимином, а гуанин — с цитозином, образуя пары А-Т и Г-Ц (и еще Т-А и Ц-Г, разумеется), другие взаимодействий между нуклеотидами в упрощенном случае можно считать невозможными (они возможны в виде исключения при некоторых редких условиях, но для нас это не важно). Уотсон-Криковское спаривание оснований еще называется комплементарностью.

Две цепи ДНК, последовательность оснований которых комплементарна, немедленно «слипаются» в двойную спираль. Возникает вопрос: а что, если на одной цепи ДНК находятся две комплементарные области? Ответ: цепь ДНК может согнуться и комплементарные области смогут образовать двойную спираль, а вместе с местом изгиба эта структура будет называться «шпилькой» (DNA hairpin):

На чем же основано «слипание» двух комплементарных цепей ДНК (или, аналогично, двух комплементарных участков одной цепи)? Это взаимодействие держится на водородных связях . Пара А-Т соединяется двумя водородными связями, пара Г-Ц — тремя, поэтому эта пара более энергетически устойчива. Про водородные связи надо понимать следующее: энергия одной водородной связи (5 ккал/моль) не намного превосходит энергию теплового движения, а значит, одна отдельно взятая водородная связь может быть с высокой вероятностью тепловым движением разрушена. Однако, чем больше водородных связей, тем более устойчивой становится система. Это значит, что короткие участки комплементарных оснований ДНК не могут образовать устойчивую двойную спираль, она будет легко «плавиться», однако более длинные комплементарные участки уже смогут образовать стабильные структуры. Стабильность двухцепочечной структуры выражается одним параметром — температурой плавления (Тм, melting temperature). По определению, температура плавления — это температура, при которой в равновесии 50% молекул ДНК с данной длиной и последовательностью нуклеотидов находятся в двухцепочечном состоянии, а другие 50% — в расплавленном одноцепочечном состоянии. Очевидно, что температура плавления напрямую зависит от длины комплементарной области (чем длиннее — тем выше температура плавления) и от нуклеотидного состава (так как в паре Г-Ц три водородные связи, а в паре А-Т — две, то чем больше пар Г-Ц, тем выше температура плавления). Температура плавления для данной последовательности ДНК легко считается по эмпирически выведенной формуле .

От теории к практике

Итак, теорию мы изучили. Что же мы можем сделать на практике? С помощью химического синтеза мы можем напрямую синтезировать цепи ДНК длиной до 120 нуклеотидов (просто потом выход продукта резко падает). Если же нам нужна более длинная цепь, то ее без проблем можно собрать из тех самых химически синтезированных фрагментов длиной до 120 нуклеотидов (например, дядюшка Крейг Вентер отличился тем, что из кусочков собрал ДНК длиной аж 1,08 миллиона пар оснований ). То есть в 21 веке мы можем легко и дешево делать ДНК любой последовательности, какой только захотим. А хотим мы, чтобы потом ДНК сворачивалась во всякие хитрые и сложные структуры, которые мы потом сможем использовать. Для этого у нас есть принцип комплементарности — как только в последовательности ДНК появляются комплементарные зоны, они слипаются и образуют двухцепочечный участок. Очевидно, мы хотим делать структуры, стабильные при комнатной температуре, значит мы хотим рассчитать температуру плавления для данных участков и сделать ее достаточно большой. При этом на одной цепи ДНК мы можем делать много разных областей с разными последовательностями и слипаться будут только комплементарные. Так как комплементарных областей может быть несколько, в результате молекула может свернуться достаточно сложным образом! Как-то так, например:

Так же, помимо положительного дизайна (создание областей, способных образовывать нужную нам структуру), при разработке структур с самосборкой нельзя забывать и о негативном дизайне — нужно проверять получившуюся последовательность ДНК на потенциальное наличие паразитных взаимодействий (когда части созданных нами областей оказываются способными взаимодейстовать по-другому, образуя ненужные нам паразитные структуры) и от этих паразитных структур и взаимодействий избавляться, меняя нуклеотидную последовательность ДНК. Как получить простейшие структуры ДНК типа «шпильки» достаточно очевидно, но скучно и неинтересно. Можно ли из ДНК сделать что-то посложнее? Здесь уже без компьютерных вычислений не обойтись. Мы хотим некую структуру и теперь должны подобрать последовательность ДНК, которая в эту структуру свернется за счет взаимодействия комплементарных областей, но при этом в последовательности не должно быть паразитных взаимодействий, непредусмотренных нами комплементарных областей, образующих альтернативные структуры. Плюс структура должна отвечать другим критериям, например, иметь температуру плавления выше некоторой заданной величины. В результате имеем типичную оптимизационную задачу.

Двухмерные структуры из ДНК

Методологический прорыв устроил Paul Rothemund (Калифорнийский Технологический Институт) в 2006 году, именно он и придумал термин «ДНК-оригами». В своей статье в «Nature» он представил множество забавных двухмерных объектов, сделанных из ДНК. Принцип, предложенный им, достаточно прост: взять длинную (примерно 7000 нуклеотидов )«опорную» одноцепочечную молекулу ДНК и затем с помощью сотни коротких ДНК-скрепок, образующих двухцепочечные области с опорной молекулой, согнуть опорную ДНК в нужную нам двухмерную структуру. Вот рисунок из оригинальной статьи, представляющий все стадии разработки. Для начала (а) нарисуем нужную нам форму красным цветом и прикинем, как заполнить ее ДНК (представим ее на этом этапе в виде труб). Далее (b) представим, как провести одну длинную опорную молекулу по нужной нам форме (показана черной линией). На третьем этапе (с) подумаем, где мы хотим разместить «скрепки», стабилизирующие укладку длинной опорной цепи. Четвертый этап (d): больше деталей, прикидываем, как будет выглядеть вся нужная нам структура ДНК и, наконец, (e) мы имеем схему нужной нам структуры, можно заказывать ДНК нужной последовательности!

Как же из химически синтезированных ДНК собрать нужную нам структуру? Здесь на помощь приходит процесс плавления. Мы берем пробирку с водным раствором, бросаем в нее все фрагменты ДНК и нагреваем до 94–98С, температуры, которая гарантировано плавит всю ДНК (переводит ее в одноцепочечную форму). Далее мы просто очень медленно (в течении многих часов, в некоторых работах — в течении нескольких дней) охлаждаем пробирку до комнатной температуры (эта процедура называется «отжиг», annealing). При этом медленном охлаждении, когда температура оказывается достаточно низкой, постепенно образуются нужные нам двухцепочечные структуры. В оригинальной работе в каждом эксперименте примерно 70% молекул успешно собирались в нужную структуру, остальные имели дефекты.

Далее, после того, как структура рассчитана, неплохо бы доказать, что она собирается именно так, как нам надо. Для этого чаще всего используют атомно-силовую микроскопию, которая как раз прекрасно показывает общую форму молекул, но иногда используют и cryo-EM (электронную микроскопию). Автор сделал множество веселых форм из ДНК, на картинках представлены расчетные структуры и результат экспериментального определения структур с помощью атомно-силовой микроскопии. Наслаждайтесь!

Трехмерные структуры из ДНК

После того, как разобрались с конструированием сложных плоских объектов, почему бы не перейти к третьему измерению? Здесь пионерами была группа ребят из Института Скриппса в Ла-Холле, Калифорния, которые в 2004 году придумали, как из ДНК сделать нано-октаэдр . Хотя эта работа и сделана на 2 года раньше плоского ДНК-оригами, в тот раз был решен лишь частный случай (получение октаэдра из ДНК), а в работе по ДНК-оригами было предложено общее решение, поэтому именно работа 2006 года по ДНК-оригами считается основополагающей.

Октаэдр был сделан из одноцепочечной молекулы ДНК длиной примерно 1700 нуклеотидов, имеющей комплементарные области и к тому же скрепленой пятью 40-нуклеотидными ДНК-адаптерами, в результате был получен октаэдр с диаметром 22 нанометра. На рисунке обратите внимание на цветовую кодировку на двухмерной развертке октаэдра. Видите области, отмеченные одинаковым цветом? Они содержат как комплементарные зоны (параллельные участки соединенные поперечными связями), так и некомплементарные (на схеме они изображены в виде пузырьков), при этом зоны одного цвета, расположенные в разных частях двухмерной развертки, взаимодействуют друг с другом, образуя сложную структуру, изображенную на рисунке 1с и образующую грань трехмерного тетраэдра. Наслаждайтесь красивыми картинками!

В 2009 году ученые из Бостона и Гарвардского Университета опубликовали принципы построения трехмерного ДНК-оригами , как они сами говорят, по подобию пчелиных сот. Одно из достижений этой работы — люди написали open-source программу caDNAno для конструирования трехмерных структур ДНК (она работает на Autodesk Maya). С этой программой даже неспециалист может собрать нужную структуру из готовых блоков с использованием простенького графического интерфейса, а программа рассчитает необходимую последовательность (или последовательности) ДНК, в эту структуру сворачивающуюся.

В следующей своей работе они научились делать из ДНК сложные трехмерные объекты с контролируемым искривлением и порадовали читателей журнала «Science» красивыми картинками разных искривленных объектов из ДНК (там такие классные шестеренки получились!).

Периодические структуры

До сих пор ученые игрались с непериодическими структурами из ДНК. А что если сделать такую структуру, чтобы один блок мог взаимодействовать с другим таким же блоком, и так до бесконечности? Представьте себе три отрезка, расположенных под углом 90 градусов друг к другу (походит на противотанковый еж). Очевидно, что такая структура может быть узлом бесконечной кубической решетки, если каждая сторона такого ежа будет взаимодействовать с другим таким ежом. Именно эту идею в 2010 году воплотили на практике ученые из Нью-Йорка, они сделали такого ДНК-ежа, который немедленно сформировал трехмерную решетку, то есть кристалл из ДНК, так что они использовали рентгеноструктурный анализ, чтобы показать, что ДНК образовали именно такую структуру, какую они и хотели. В свою очередь, так как кристаллы ДНК имели размер до пол-миллиметра (а это уже макро-объект), было гордо заявлено, что теперь из нано-объектов мы умеем собирать макро-объекты.

Вот стерео-картинка узла решетки, если умеете правильно скашивать глаза (это прямая стереопара), можете посмотреть в 3D (на нижней картинке с электронной плотностью ДНК четко видны два узла-«противотанковых ежа»):

Динамические структуры

Следующий шаг в конструировании трехмерных нано-объектов так же очевиден — а что если заставить это все как-то двигаться? Движущийся объект уже можно и нано-роботом назвать. Самый простенький ДНК-шагоход был сделан в 2008 году командой из Калифорнийского Технологического института . Работает он по достаточно простому принципу. Представьте себе одноцепочечную ДНК длиной, скажем, 100 нуклеотидов. Представьте другую одноцепочечную ДНК, короткую, длиной 50 нуклеотидов, комплементарную половине первой молекулы. Что будет, если их смешать? Правильно, они образуют двухцепочечную структуру в районе этих 50 нуклеотидов, вторая же половина первой молекулы останется свободной. А что если к этой структуре добавить еще одну молекулу ДНК, длиной 100 нуклеотидов и полностью комплементарной первой молекуле? Ответ вполне очевиден: она вытеснит короткую цепь длиной 50 нуклеотидов, так как обладает большим сродством к первой молекуле (у них сродство 100 из 100, а с короткой — только 50 из 100 нуклеотидов). Именно так и работал первый ДНК-шагоход. На подложке закреплены молекулы одноцепочечной ДНК, к ним из раствора приходит молекула-шагоход, имеющая комплементарные зоны к двум соседним цепям на подложке и связывается с ними. Если потом мы добавим в раствор другую ДНК, имеющую большее сродство к первой цепи на подложке, то она вытеснит одну ногу шагохода, после чего эта нога свяжется со следующей (третьей) цепью ДНК на подложке. Добавляя новые вытесняющие ДНК можно гнать шагоход все дальше и дальше по подложке. Обратный ход невозможен, так как предыдущие цепи на подложке уже инактивированы связыванием с более длинной молекулой ДНК.

Хотя первый шагоход выглядел настолько примитивно, конструкция была доработана учеными из Нью-Йорка . Они сделали более сложный шагоход с несколькими «руками» и «ногами», прицепили при помощи комплементарных ДНК на подложку «груз» (золотые частицы диаметром 5 и 10 нм) и «запрограммировали» шагоход таким образом, чтобы он прошел по подложке и собрал груз — три маленькие и одну большую золотые частицы. Последовательность шагов легко отследить по стрелочкам, а на экспериментальной картинке справа видны частицы золота и как шагоход их собирает. Нано-робот в действии! На нижней картинке показано, как именно происходит процесс «шагания» и сбора груза, принцип — тот же самый, вытеснение одной ДНК другой.

Но это еще не все. Венцом ДНК-робототехники (думаю, тут в моем голосе слышим некоторый сарказм) стал «наноробот для молекулярного транспорта» , как окрестили его создатели из Бостона. Фактически ребята сделали некую «коробочку» из ДНК, закрывающуюся на «замок» из ДНК, который может быть открыт по уже известному нам принципу вытеснения одной ДНК другой, как в шагоходах. Внутри коробочки спрятан груз — частицы золота либо молекулы иммуноглобулина. ДНК можно химически модифицировать таким образом, чтобы на ней можно было закрепить этот самый груз. Итак, мы имеем закрытую коробочку, содержимое коробочки надежно спрятано. Тут мы добавляем молекулу, открывающую коробочку, она открывается и иммуноглобулин, спрятанный внутри, выходит наружу и начинает действовать! Мы же хлопаем в ладоши, умиляемся и радуемся прогрессу.

Ребята даже не поленились сделать демонстрацию proof of principle на живых раковых клетках: они прятали в коробочку антитела, блокирующие ключевые белки клеточного цикла, вводили коробочки в раковые клетки и после добавления открывающего коробочку активатора раковые клетки правда переставали делиться! Таким образом была показана принципиальная возможность использования таких конструкций для направленной доставки лекарств в организме и их выделения в нужное время по сигналу от молекулы-активатора. Одна осталась проблема, как раковую клетку от здоровой надежно отличить…

Для чего козе баян?

Все это, конечно, здорово и хорошо, картинки красивые, но внимательный читатель может спросить: «А где обещанная в самом начале польза для народного хозяйства?». Как и со всякой новой технологией, пока большой практической пользы действительно нет, помимо эстетического удовольствия от созерцания этой нано-красоты. Однако, все только начинается! Во-первых, ДНК может быть химически модифицирована, к ней могут быть добавлены химические группы, обеспечивающие связывание с другими молекулами и тогда ДНК можно использовать как подложку для построения сложных структур из других молекул. Например, сейчас все хотят что-то мастерить из нанотрубок. Если удастся сделать адаптер, связывающийся одним концом с ДНК, а другим — с нанотрубкой, тогда структуры из ДНК можно использовать для соединения нанотрубок. С другой стороны, уже есть сообщения о контролируемой металлизации ДНК , а отсюда уже рукой подать до конструирования электронных устройств на базе структур из металлизированной ДНК. Может быть, ученые изобретут более подходящий полимер, обеспечивающий более удобную самосборку сложных структур, но в любом случае ДНК-оригами займет свое место в истории науки, как один из первых примеров конструирования сложных объектов в нано-масштабе. Как бы то ни было, нас ждет большое и светлое будущее, чего и вам желаю!

PS: интересное дополнение: Уже пару лет проводится конкурс BIOMOD по дизайну таких штук при поддержке Wyss Institute (замеченного во многих интересных биотехнологических достижениях вроде недавней 3D-печати мини-аккумуляторов ).

Модель молекулы воды своими руками из бумаги. Как сделать модель днк из обычных материалов

О том, что вещества состоят из отдельных мельчайших частиц, люди догадывались очень давно, это утверждал еще около 2500 лет назад греческий ученый Демокрит.

Но если в древности ученые лишь предполагали, что вещества состоят из отдельных частиц, то в начале XX века существование таких частиц было доказано наукой. Частицы, из которых состоят многие вещества, называют молекулами 1 .

Молекула вещества — мельчайшая частица этого вещества. Наименьшая частица воды — это молекула воды, наименьшая частица сахара — это молекула сахара и т.д.

Каковы же размеры молекул?

Известно, что кусок сахара можно растолочь на очень маленькие крупинки, зерно пшеницы размолоть в муку. Масло, растекаясь по воде, образует пленку, толщина которой в 40 000 раз меньше толщины человеческого волоса. Но и в крупинке муки и в толще масляной пленки содержится не одна, а много молекул. Значит, размеры молекул этих веществ еще меньше, чем размеры крупинки муки и толщина пленки. Можно привести следующее сравнение: молекула во столько же раз меньше яблока среднего размера, во сколько раз яблоко меньше земного шара.

Молекулы разных веществ отличаются друг от друга размерами, но все они очень малы. Современные приборы — электронные микроскопы — позволили увидеть и сфотографировать наиболее крупные из молекул (см. цветную вклейку II). Эти фотографии – еще одно подтверждение существования молекул.

Так как молекулы очень малы, то в каждом теле их содержится великое множество. В 1 см 3 воздуха содержится такое число молекул, что если» сложить столько же песчинок, то получится гора, которая закроет большой завод.

В природе все тела отличаются друг от друга хоть чем-нибудь. Нет людей с одинаковыми лицами. Среди листьев, растущих на одном дереве, нет двух совершенно одинаковых. Даже в целой куче песка мы не найдем одинаковых песчинок. Миллионы шариков для подшипников изготавливают на заводе по одному образцу, одинакового размера. Но если шарики измерить точнее, чем это делалось при обработке, то можно убедиться, что среди них не найдется и двух одинаковых.

Отличают

как сделать оригами из ДНК и получить лекарство от рака — T&P

Что общего у лекарства от рака и искусства оригами? Дезоксирибонуклеиновая кислота. Технология создания ДНК-оригами возникла 7 лет назад. Сегодня она обещает человечеству новые способы борьбы с онкологическими заболеваниями и компьютерные схемы размером с молекулу. «Теории и практики» рассказывают о новом методе.

Одиночная нить ДНК — одна из самых сложных и одновременно самых простых вещей в мире. Она состоит из сахаро-фосфатного стержня, где к каждому сахару прикреплено одно из четырех азотистых оснований: аденин, тимин, цитозин или гуанин. Аденин может связываться с тимином, гуанин — с цитозином. Но никогда — наоборот. Если последовательность оснований комплементарна, две нити ДНК «слипаются» в двойную спираль. Так рождается материал, способный кодировать геном.

Но что же случается, если последовательность оснований не совпадает, и нити не могут соединиться? Генетики называют то, что возникает в этом случае, «шпилькой», или «стеблем-петлей». Такая структура довольно устойчива, но может раскрыться и стать частью обыкновенной двойной спирали, если рядом окажется более подходящий фрагмент ДНК.

Гибкость одиночных нитей дезоксирибонуклеиновой кислоты натолкнула ученых на революционную идею. В 2006 году молодой кандидат наук Калифорнийского технологического института Пол Ротмунд собрал из ДНК двухмерные объекты необычной формы: смайлики, звезды, пирамидки и даже миниатюрную карту Западного полушария. Свое изобретение Ротмунд назвал «ДНК-оригами» и высказал надежду, что в будущем эта техника позволит человеку создать механизм генетического программирования.

Метод, изобретенный калифорнийским ученым, выглядел изящно и просто, как это нередко бывает в генетике: Ротмунд синтезировал невероятно длинные нити ДНК и затем «сгибал» их с помощью ниточек покороче — «скрепок», которые соединялись с основой. Правда, делал это ученый отнюдь не с помощью нанопинцета. Чтобы собрать свои оригами, Ротмунд занимался отжигом: готовые фрагменты он помещал в водный раствор, нагревал его до температуры плавления ДНК (порядка 94-98°С), когда водородные связи распадаются и двойные спирали превращаются в отдельные нити, а затем в течение многих часов и даже дней остужал получившийся «бульон». В результате порядка 70% молекул принимали нужную форму, — ведь благодаря правилу комплементарности одиночная нить ДНК способна сама найти свою «сестру» среди множества менее подходящих фрагментов.

Открытие Ротмунда наделало много шуму. Однако всего через два года после судьбоносного отжига в Калифорнийском технологическом институте произошло еще одно знаменательное событие: команде ученых удалось заставить ДНК-структуру передвигаться. Миниатюрного «робота», по виду напоминавшего табуретку, специалисты поместили на подложку с одиночными нитями ДНК — своеобразными «маяками». Перед каждым шагом ученые подсаживали в раствор дополнительную ниточку, более комплементарную «маякам», чем «ножки» «робота». В результате, «ножка» вытеснялась, и структура двигалась вперед.

С тех пор в мире появилось несколько вариантов ДНК-оригами: трехмерные «соты», 3D-блоки с контролируемым углом наклона, наношестеренки, миниатюрные кристаллы, способные образовать кристаллическую решетку, а также «ДНК-робот» нового поколения, которому удалось не просто пройти по «маякам», но и собрать крупинки золота, заботливо разложенные на его пути. Все эти изобретения были очень красивы, но вовсе не являлись пустой тратой времени. У разработчиков ДНК-оригами существовали практические цели: например, создать «транспорт» для токсичных противораковых лекарств. Такое изобретение позволило бы доставлять активные вещества в опухоль без вреда для здоровых тканей, уменьшить тяжесть и частоту побочных эффектов лечения и даже снизить уровень смертности среди больных.

Один из первых шагов в этом направлении был сделан в 2011 году в Бостоне. Ученым удалось собрать из ДНК-оригами коробочку с крышкой и закрепить у нее внутри антитела, способные блокировать ключевые белки клеточного цикла раковых клеток. Когда капсула достигла своей цели, специалисты отправили к ней нить-активатор. Она открыла коробочку по тому же принципу, что и в ходе экспериментов с «роботом»: вытеснив фрагменты «замка». Опыт проводился in vitro, и вскоре после него возник вопрос: даже если капсулы способны доставить препарат к месту назначения, как они «отличат» больные клетки от здоровых, чтобы раскрыться вовремя?

К ответу удалось вплотную приблизиться шведским ученым из Каролинкского университета. Они сделали ДНК-оригами с поверхностью, модифицированной для выборочного взаимодействия с раковыми клетками, — а если точнее, с белками, которые есть только в них. Внутрь капсул, на этот раз по форме напоминавших морские звезды, специалисты поместили молекулы доксорубицина — токсичного препарата, который хорошо помогает справиться со злокачественной опухолью, но может остановить работу сердца. Ученые использовали «недокрученные» двойные спирали ДНК, что позволило им замедлить выход препарата безо всяких «замков».

У ДНК-оригами существует и другой потенциал. Недавно специалисты из Мюнхенского университета и Рейнско-Вестфальского технического университета Ахена создали нанопровод из металлизированной ДНК. Они использовали два типа нитей с разными свойствами: в одних были компоненты, которые способствовали агрегации частичек серебра и склеиванию молекул друг с другом, другие провоцировали клик-реакцию — так называемое азид-алкиновое циклоприсоединение, в ходе которого ДНК приклеивалась к кремниевой подложке. В растворе также были частички золота, которые осаждались на серебро на втором этапе реакции.

В ходе опыта у немецких ученых получился крошечный, но стабильный провод длиной всего 1 микрометр (для сравнения, толщина человеческого волоса составляет 80-100 микрометров). Специалисты надеются, что в будущем эта технология позволит создавать нанотранзисторы и электронные наносхемы. Эти предметы будут меньше всего, что мы сегодня способны произвести, и позволят совершить настоящую нанореволюцию.

💣днк из бумаги ✔️



Главная

Loading…


ТЭГИ


приколы видео орел и решка черногория русские молодые политика спорт музыка события факты звёзды Дота 2 женщины альтернатива КВН драки война мультики актёры кино онлайн масяня приколы наруто видеоклипы видеобитва машины видеореклама вконтакте однокласники видеоролик дня видеоролики 2018 видеоролики без смс казино АТО ДНР ополчение смешное видео youtube приколы дом2 драки стоп хам драки я приколы видео дом2 серии дорогой ты где был русские детективные сериалы бэк ту скул пранки над друзьями новые видеоклипы, Поздравления

РЕКЛАМА



ПАРТНЁРЫ


Сообщество


днк из бумаги .

Оригами ДНК из бумаги
Оригами ДНК из бумаги
Нажми для просмотра
#origamistreets Узнайте как сделать ДНК из бумаги. Оригами модель ДНК сделана из листа бумаги формата а4.Подписат ь…
 
 
 
Тэги:
 
ОРИГАМИ ДНК из бумаги. Как сделать спираль днк из бумаги своими руками. Origami
ОРИГАМИ ДНК из бумаги. Как сделать спираль днк из бумаги своими руками. Origami
Нажми для просмотра
Всем привет, в этом видео я покажу, как сделать спираль ДНК оригами.
 
 
 
Тэги:
 
СПИРАЛЬ ОРИГАМИ антистресс без клея | спираль ДНК | простые поделки для детей — СПИРАЛЬ ИЗ БУМАГИ
СПИРАЛЬ ОРИГАМИ антистресс без клея
Нажми для просмотра
Обучающий видео мастер-кла с научит как сделать ОРИГАМИ СПИРАЛЬ ДНК, простая поделка для детей выполненна я…
 
 
 
Тэги:
 
Как раскрасить оригами модель днк+How to paint origami model of DNA+модель днк своими руками
Как раскрасить оригами модель днк+How to paint origami model of DNA+модель днк своими руками
Нажми для просмотра
Как раскрасить оригами модель днк.How to paint origami model of DNA Помогите с продвижени ем канала и ускорьте выход …
 
 
 
Тэги:
 
Антипаника и практическое здоровье
Антипаника и практическое здоровье
Нажми для просмотра
Я РЕШИЛА САМОИЗОЛИР ОВАТЬСЯ ⠀ Поэтому даже не знаю, когда вернусь 🤷 ‍♀️ Меня не пугает вирyc, как всеоб…
 
 
 
Тэги:
 
Как сделать молекулу днк\DNK в Cinema4D
Как сделать молекулу днк\DNK в Cinema4D
Нажми для просмотра
краткая инструкция по созданию молекулы днк.
 
 
 
Тэги:
 
Zenome — ДНК Маркетплейс
Zenome - ДНК Маркетплейс
Нажми для просмотра
Присоедини ться к ICO — Белая бумага — ANN on BTT …
 
 
 
Тэги:
 
Пётр Гаряев. Человеческая речь влияет на ДНК
Пётр Гаряев. Человеческая речь влияет на ДНК
Нажми для просмотра
Мат как речевая мутация: какой смысл должны нести слова? Что такое духовное .. .
 
 
 
Тэги:
 
МОЕ ПРОИСХОЖДЕНИЕ | ДНК ТЕСТ
МОЕ ПРОИСХОЖДЕНИЕ
Нажми для просмотра
Видео снято исключител ьно в развлекате льных целях)Я мог что-то не правильно сказать, но мне все равно.◓Инс …
 
 
 
Тэги:
 
Воссоздание десяти спиралей ДНК
Воссоздание десяти спиралей ДНК
Нажми для просмотра
Видео создано Жаннеттой Шевченко на основе прямого эфира Игоря Ткаченко . Подписывай тесь на канал…
 
 
 
Тэги:
 
Blender 3D Dnk creation 10 — 15 minute real time.
Blender 3D Dnk creation 10 - 15 minute real time.
Нажми для просмотра
В данном коротком видео ролике я решил показать процесс создания днк за 10 — 15 минут реального времени. Для…
 
 
 
Тэги:
 
ДНК-оригами
ДНК-оригами
Нажми для просмотра
Небольшой рассказ об интересном строении ДНК, Щапина Ксения.
 
 
 
Тэги:
 
Basteln: Origami Schmetterling falten mit Papier. Bastelideen Geschenke: DIY Deko
Basteln: Origami Schmetterling falten mit Papier. Bastelideen Geschenke: DIY Deko
Нажми для просмотра
Eine einfache Anleitung zum Schmetterlinge basteln: Diese Schmetterlinge sind eignen sich als Deko und Geschenk für Muttertag …
 
 
 
Тэги:
 
How to Make a DNA model using Thermocol
How to Make a DNA model using Thermocol
Нажми для просмотра
DIY — Learn how to make a paper diamond very easyWatch this batter paper Diamond that look like real : …
 
 
 
Тэги:
 
How to Make a Paper Diamond — Simple Way
How to Make a Paper Diamond - Simple Way
Нажми для просмотра
En la actividad de hoy haremos la #maqueta del #adn de una manera muy #facil.Lista de materiales:- Palito de madera de 30cm …
 
 
 
Тэги:
 
Como hacer la maqueta del ADN — TAP ZONE MX
Como hacer la maqueta del ADN - TAP ZONE MX
Нажми для просмотра
This hands-on activity allows you to create your own paper model of a DNA double helix. DNA has a ‘double helix’ structure.
 
 
 
Тэги:
 
DNA origami: how to fold a double helix
DNA origami: how to fold a double helix
Нажми для просмотра
Работа участвует в конкурсе в рамках «Неделя науки в школах» Выявление ДНК в домашних условиях без…
 
 
 
Тэги:
 
«Неделя науки в школах» Выявление и сравнение ДНК человека и банана
«Неделя науки в школах» Выявление и сравнение ДНК человека и банана
Нажми для просмотра
This video demonstrates 3 Science Exhibition Project Model Ideas for Biology students. You will learn about How to make a DNA …
 
 
 
Тэги:
 
3 Easy DNA MODEL PROJECT Ideas | Science Exhibition Models |
3 Easy DNA MODEL PROJECT Ideas
Нажми для просмотра
PÁGINA: Hola como están gente de youtube, en este vídeo vamos a aprender a como hacer unos …
 
 
 
Тэги:
 
Como Hacer Una Maqueta De Pulmones Caseros Que Respiran-Proyecto Escolar
Como Hacer Una Maqueta De Pulmones Caseros Que Respiran-Proyecto Escolar
Нажми для просмотра
CLIL su struttura DNA in 4B LS.
 
 
 
Тэги:
 
modellino DNA
modellino DNA
Нажми для просмотра
So glad that thousands of you love this solution! If you have any questions, leave a comment! Demonstration on how to make a …
 
 
 
Тэги:
 
HOW TO MAKE A DNA MODEL USING PIPECLEANERS. PROJECT DEMONSTRATION
HOW TO MAKE A DNA MODEL USING PIPECLEANERS. PROJECT DEMONSTRATION
Нажми для просмотра
DNA #METAVERSE #BLOCKCHAIN #CRYPTO #DECENTRALIZED …
 
 
 
Тэги:
 
Строение молекулы ДНК
Строение молекулы ДНК
Нажми для просмотра
Оригинал легендарно й картины Леонардо да Винчи «Мона Лиза» имеет довольно скромные размеры. Но ученые…
 
 
 
Тэги:
 
🚀EXPLORING METAVERSE DNA — Быстрый кросс-блокчейн с ДНК, который быстро обрабатывает транзакции 💥
🚀EXPLORING METAVERSE DNA - Быстрый кросс-блокчейн с ДНК, который быстро обрабатывает транзакции 💥
Нажми для просмотра
Provided to YouTube by The Orchard Enterprises Розы · Миша Смирнов · Катя Адушкина Розы ℗ 2020 DNK Music Released …
 
 
 
Тэги:
 
«Мону Лизу» собрали из ДНК-оригами
«Мону Лизу» собрали из ДНК-оригами
Нажми для просмотра
Студия для блоггеров Хромакей https://блог-с удия-хрома кей.рф/?utm_sou rce=youtube В случае ядерного взрыва, каждый …
 
 
 
Тэги:
 
Розы
Розы
Нажми для просмотра
Я вас научу делать браслет как спиралька из какого материала надо делать.
 
 
 
Тэги:
 
Является ли ДНК будущим хранилищем данных? Лев Медведь Макгиннесс #TED-Ed» rel=»spf-prefetch
Является ли ДНК будущим хранилищем данных? Лев Медведь Макгиннесс #TED-Ed
Нажми для просмотра
Описание отсутсвует
 
 
 
Тэги:
 
ДНК оригами (нанороботы), Артур Залевский — Научный стенд-ап» rel=»spf-prefetch
ДНК оригами (нанороботы), Артур Залевский - Научный стенд-ап
Нажми для просмотра
Описание отсутсвует
 
 
 
Тэги:
 
Как сделать браслет днк» rel=»spf-prefetch
Как сделать браслет днк
Нажми для просмотра
Описание отсутсвует
 
 
 
Тэги:
 
Спираль ДНК» rel=»spf-prefetch
Спираль ДНК
Нажми для просмотра
Описание отсутсвует
 
 
 
Тэги:
 

Изготовление и применение на уроках биологии динамичной модели процесса деления клетки

В общей биологии тема «Деление клетки» является одной из самых трудных для учащихся. В ней вводится много новых понятий, даётся описание поведения хромосом на разных этапах деления клетки. Многие учащиеся не могут представить весь этот сложный механизм, что вызывает затруднения в изучении данной темы. Для облегчения восприятия материала мною была разработана динамичная модель деления клетки, показывающая поведение хромосом во время митоза и мейоза. Модель легка в изготовлении и даёт хороший эффект в усвоении сложного материала.
Модель можно изготовить из плотного картона. Подвижность деталей обеспечена скольжением их по капроновой леске с помощью нитей, выполняющих функцию нитей веретена деления. Детали, изображающие гомологичные хромосомы, лучше изготовить из цветного картона. Цвет наглядно демонстрирует тот факт, что диплоидный набор хромосом клетки образован из гаплоидных наборов мужской и женской гамет. Каждая деталь символизирует одну нить ДНК (хроматиду). Детали нанизываются на капроновую леску и крепятся на картонной основе, изображающей клетку. На полюсах «клетки» надо сделать отверстия, через которые протянуть нити (нити веретена деления). Нити крепятся к хромосомам в области центромеры. Чтобы избежать разрыва картона при натягивании нитей, в отверстия, изображающие клеточный центр, необходимо вставить небольшие кусочки от стержня шариковой ручки. Модель готова, и её можно применять на уроках.
Приведу примеры применения динамичной модели процесса деления клетки при изучении тем «Деление клетки. Митоз», «Мейоз» и «Генетика. Моногибридное и дигибридное скрещивание. Закон чистоты гамет», “Сцепленное наследование”, “Наследственная изменчивость”.
Теме «Деление клетки. Митоз» предшествует тема о клеточном цикле и интерфазе. Важным процессом интерфазы является репликация – удвоение ДНК. С помощью модели её можно изобразить так (рис. 1 и 2):                                    

В первом положении хроматиды расположены одна над другой, поэтому хромосомы выглядят однохроматидными. При смещении деталей по леске относительно друг друга получаются двухроматидные хромосомы. При этом необходимо уточнить, что увеличивается число ДНК, а не хромосом, т.е. 2n2c>2n4c. Именно такая клетка приступает к делению.
Первая фаза митоза – профаза – характеризуется спирализацией хромосом, расхождением клеточного центра к полюсам клетки и разрушением ядерной оболочки. Охарактеризовать этот процесс не сложно с помощью рисунков учебника и других наглядных пособий. Детям труднее представить, что такое метафазная пластинка, веретено деления, как сохраняется число хромосом при расхождении их к полюсам клетки. Это наглядно демонстрирует модель деления клетки. Модель митоза состоит из трёх частей (рис. 3, 5, 6). На рисунке 3 изображена вторая фаза митоза – метафаза. Она показывает расположение хромосом в экваториальной плоскости клетки в один слой (метафазная пластинка) и прикрепление нитей веретена деления к центромерам хромосом (по две нити к каждой хромосоме). Хромосомы оказываются подвешенными на двух нитях от противоположных полюсов клетки. Эта структура и называется веретено деления. Укорачивание нитей (протаскивание их через отверстия) приводит к разделению хромосом и расхождению хроматид (рис. 4). Так осуществляется анафаза.

Кариокинез завершается формированием ядерной оболочки и деспирализацией хромосом, т.е. наступает ранняя телофаза (рис. 5). После формирования клеточной пластинки и разделения цитоплазмы (цитокинез) деление завершается образованием дочерних клеток. Это последняя фаза митоза – телофаза (рис.6).

Сравнивая первую и третью детали модели (рис. 1 и 5), дети сами могут сделать вывод о биологической роли митоза как процесса деления клетки, в результате которого сохраняется наследственный материал.
При изучении темы “Мейоз” ученикам необходимо напомнить, как происходит интерфазное удвоение ДНК (рис.1 и 2), так как в мейоз вступает клетка 2n4c. Модель мейоза состоит из 10 частей (рис. 7, 8, 10, 12, 13, 15). В первом делении мейоза особое внимание  уделяется профазе. Происходящие в этой фазе коньюгация (рис. 7) и кроссинговер (рис. 8 и 9) приводят к образованию комбинированных хромосом, следовательно, проявлению у организмов комбинативной изменчивости. Процесс кроссинговера ещё раз будет рассмотрен в теме “Сцепленное наследование” (генетика) и “Наследственная изменчивость”.

В метафазе первого деления (I) мейоза гомологичные хромосомы выстраиваются в экваториальной плоскости клетки, но, в отличие от митоза, в два ряда (рис. 10).

Нити веретена деления прикрепляются по одной от каждого полюса к хромосомам, поэтому в анафазе первого деления (I) к полюсам расходятся двухроматидные хромосомы, а число хромосом уменьшается вдвое (рис. 11). В результате в телофазе первого деления (I) образуются две клетки n2c (рис. 12).
Второе деление мейоза очень похоже на митотическое деление. Профаза II происходит  быстро, наступает метафаза II (рис.13) и анафаза II (рис.14). И так как ко второму делению приступают две клетки n2c, то в телофазе II образуется 4 гаплоидные клетки nc (рис.15).

Все части комплекта демонстрируются последовательно, по мере изучения материала и вывешиваются на доску. При изучении мейоза необходимо демонстрировать и модель митоза, чтобы учащиеся могли сравнить оба процесса.
Модель деления клетки помогает учащимся лучше понять закон чистоты гамет и цитологические основы моногибридного и дигибридного скрещивания в теме “Генетика”. Для этого на хромосомы схемы метафазы второго деления (рис. 10) крепятся буквенные символы генов: доминантный аллель А и рецессивный аллель а – при моногибридном скрещивании или Аа и Вв – при дигибридном. При этом расположение хромосом в метафазе II может быть разным (рис. 16 и 18). Если хромосомы расположены как на рисунке 16, то в одну клетку попадут гены А и В, а во вторую – а и в (рис. 17).

Если в метафазе II хромосомы будут расположены как на рисунке 18, то в одну клетку попадут гены А и в, а во вторую – а и В (рис. 19).

Такое расположение хромосом в меойзе равновероятно, поэтому у дигетерозигот с равной вероятностью могут образоваться четыре типа гамет: АВ, Ав, аВ и ав.
Таким же образом можно демонстрировать закон сцепленного наследования, только гены А и В (А и в) расположены в одной из гомологичных хромосом, а а и в (а и В) – в другой. Ученики видят, как гены, образующие группу сцепления, попадают в одну гамету (рис. 20 и 21).    

Может быть, кто-то скажет, что в наш век компьютерных технологий процесс деления клетки можно смоделировать с помощью компьютера и мультимедиа. Но в условиях недостаточного обеспечения сельской школы компьютерами динамичная модель процесса деления клетки помогает мне более доступно объяснять сложные темы, а ученикам – лучше их понимать.

Как на самом деле выглядит ДНК: первая 3D-модель

Учёные из Кембриджского университета создали первую 3D-модель генома живой клетки. Двойные спирали ДНК, несущие генетическую информацию, имеют в ядре в очень компактную и сложную структуру, понимание которой может помочь бороться со многими болезнями.

Если вытянуть ДНК из всех хромосом одной человеческой клетки, получится нить длиной около 2 метров. Однако нити двойных спиралей уложены так компактно, что 23 пары хромосом помещаются в ядре, которое не разглядеть без микроскопа. От того, каким образом ДНК укладывается в эту компактную структуру, зависит активность отдельных генов, а значит — здоровье всего организма. Чтобы на основе информации, записанной в ДНК, синтезировались нужные организму белки, пространственный доступ к генам не должен быть затруднён. Поэтому в хромосоме нить ДНК, во‑первых, должна максимально компактно свернуться, а во-вторых оставить открытыми все участки, содержащие важные кодрующие последовательности.

Эти две подчас противоречащие друг другу задачи решаются за счёт некольких уровней пространственной организации ДНК: двойная спираль из нуклеотидов наматывается на особые белки-гистоны, играющие роль бобин, или катушек. Такие «катушки» из участков ДНК, намотанных на гистоны, называются нуклеосомами. Нуклеосомы складываются вплотную друг к другу, но не ровными стопками, а с небольшим разворотом, отчего вся конструкция напоминает спираль. Такие спирали называют фибриллами. В свою очередь, фибриллы укладываются в компактную бесформенную структуру, образуя хромосому, а хромосомы плотно прилегают друг к другу, чтобы поместиться в ядре клетки.

Используя технологии визуализации и результаты более сотни тысяч измерений, ученым из Кембриджа удалось создать первую в истории 3D-модель ДНК внутри ядра живой клетки (использовались стволовые клетки мышиных эмбрионов). Хрестоматийную Х-образную форму хромосомы принимают только тогда, когда клетка готовится к делению, а большую часть жизни ДНК проводит в форме вот такого неровного шарика (разными цветами на видео показаны отдельные хромосомы).

Во втором видео цветом показаны активные и неактивные участки ДНК: на голубых участках находятся гены, которые активно экспрессируются, а участки хромосом, окрашенные в жёлтый, взаимодействуют с внутренней стороной ядерной мембраны.

Ошибки укладки ДНК в ядре приводят к нарушению экспрессии генов; в частности, такие ошибки сопровождают процесс превращения здоровой клетки в раковую. Поэтому генетики стремятся понять, как организована сложная пространственная структура генома, и научиться исправлять ошибки.

Подробно методика визуализации и процесс создания 3D-модели описаны в статье, опубликованной в журнале Nature.

Добавить комментарий

Ваш адрес email не будет опубликован.